Gerrit Koopman, Tom Verhoeven, Petra Mooij, Roja F. Acar, Thibault Harmand, Laney Flanagan, Jaco Bakker, Kinga P. Böszörményi, Ronald E. Bontrop, Jan A. M. Langermans, Hidde L. Ploegh, Ernst J. Verschoor, Danielle J. Vugts, Novalia Pishesha, Marieke A. Stammes
{"title":"Imaging the immune sequelae of infection with SARS-CoV-2 in nonhuman primates by using two nanobody PET-tracers","authors":"Gerrit Koopman, Tom Verhoeven, Petra Mooij, Roja F. Acar, Thibault Harmand, Laney Flanagan, Jaco Bakker, Kinga P. Böszörményi, Ronald E. Bontrop, Jan A. M. Langermans, Hidde L. Ploegh, Ernst J. Verschoor, Danielle J. Vugts, Novalia Pishesha, Marieke A. Stammes","doi":"10.1002/jmv.29956","DOIUrl":null,"url":null,"abstract":"<p>Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacts multiple anatomical sites. Whether this is due to the virus itself or is a secondary effect caused by the influx and activation of immune cells is not known. Positron emission tomography (PET) with immunoglobulins can provide insights into which sites and cells are activated in a living animal. Our aim is to use two nanobodies as tools to monitor (1) the distribution of antigen presenting cells (APC) by virtue of their Mafa-DR expression profile, (2) virus-infected cells and viral particles using a nanobody against the SARS-CoV-2 spike protein. Two [<sup>89</sup>Zr]-labeled nanobodies that target the SARS-CoV-2 spike protein and major histocompatability complex (MHC) class II antigens (Mafa-DR), respectively, are used to monitor their distribution during an experimental SARS-CoV-2 infection in a nonhuman primate model. Scans are obtained before infection and on Day 3 and 10 post infection (pi) in two macaques each. The [<sup>89</sup>Zr]anti-SARS-CoV-2 spike nanobody localized to SARS-CoV-2-associated lung lesions and the nasal mucosa, while the [<sup>89</sup>Zr]anti-human leukocyte antigen (HLA)-DR nanobody was predominantly found in non-affected lung tissue after infection. We also detected, pi, upregulation of the Mafa-DR signal, indicative of recruitment of professional APCs, in the superior sagittal sinus. [<sup>89</sup>Zr]-labeled nanobodies show recruitment of macrophages/monocytes in non-lesional lung tissue in cynomolgus macaques after experimental infection with SARS-CoV-2, as well as accumulation of the spike protein in both lung lesions and the nasal mucosa during infection. These results show the possibility of in vivo monitoring the quality and quantity of immune responses during the initial stages of an infection.</p>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"96 10","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmv.29956","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmv.29956","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacts multiple anatomical sites. Whether this is due to the virus itself or is a secondary effect caused by the influx and activation of immune cells is not known. Positron emission tomography (PET) with immunoglobulins can provide insights into which sites and cells are activated in a living animal. Our aim is to use two nanobodies as tools to monitor (1) the distribution of antigen presenting cells (APC) by virtue of their Mafa-DR expression profile, (2) virus-infected cells and viral particles using a nanobody against the SARS-CoV-2 spike protein. Two [89Zr]-labeled nanobodies that target the SARS-CoV-2 spike protein and major histocompatability complex (MHC) class II antigens (Mafa-DR), respectively, are used to monitor their distribution during an experimental SARS-CoV-2 infection in a nonhuman primate model. Scans are obtained before infection and on Day 3 and 10 post infection (pi) in two macaques each. The [89Zr]anti-SARS-CoV-2 spike nanobody localized to SARS-CoV-2-associated lung lesions and the nasal mucosa, while the [89Zr]anti-human leukocyte antigen (HLA)-DR nanobody was predominantly found in non-affected lung tissue after infection. We also detected, pi, upregulation of the Mafa-DR signal, indicative of recruitment of professional APCs, in the superior sagittal sinus. [89Zr]-labeled nanobodies show recruitment of macrophages/monocytes in non-lesional lung tissue in cynomolgus macaques after experimental infection with SARS-CoV-2, as well as accumulation of the spike protein in both lung lesions and the nasal mucosa during infection. These results show the possibility of in vivo monitoring the quality and quantity of immune responses during the initial stages of an infection.
期刊介绍:
The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells.
The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists.
The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.