Siyu Xue, Benjamin A. Storer, Rachel C. Glade, Hussein Aluie
{"title":"Surface Variability Mapping and Roughness Analysis of the Moon Using a Coarse-Graining Decomposition","authors":"Siyu Xue, Benjamin A. Storer, Rachel C. Glade, Hussein Aluie","doi":"10.1029/2024JE008484","DOIUrl":null,"url":null,"abstract":"<p>The lunar surface contains a wide variety of topographic shapes and features, each with different distributions and scales, and any analysis technique to objectively measure roughness must respect these qualities. Coarse-graining is a naturally scale-dependent filtering technique that preserves scale-dependent symmetries and produces coarse elevation maps that gradually erase the smaller features from the original topography. In this study of the lunar surface, we present two surface variability metrics obtained from coarse-graining lunar topography: fine elevation and coarse curvature. Both metrics are isotropic, deterministic, slope-independent, and coordinate-agnostic. Fine (detrended) elevation is acquired by subtracting the coarse elevation from the original topography and contains features that are smaller than the coarse-graining length-scale. Coarse curvature is the Laplacian of coarsened topography, and naturally quantifies the curvature at any scale and indicates whether a location is elevated or depressed relative to its neighborhood at that scale. We find that highlands and maria have distinct roughness characteristics at all length-scales. Our topographic spectra reveal four scale-breaks that mark characteristic shifts in surface roughness: 100, 300, 1,000, and 4,000 km. Comparing fine elevation distributions between maria and highlands, we show that maria fine elevation is biased toward smaller-magnitude elevations and that the maria–highland discrepancies are more pronounced at larger length-scales. We also provide local examples of selected regions to demonstrate that these metrics can successfully distinguish geological features of different length-scales.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008484","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The lunar surface contains a wide variety of topographic shapes and features, each with different distributions and scales, and any analysis technique to objectively measure roughness must respect these qualities. Coarse-graining is a naturally scale-dependent filtering technique that preserves scale-dependent symmetries and produces coarse elevation maps that gradually erase the smaller features from the original topography. In this study of the lunar surface, we present two surface variability metrics obtained from coarse-graining lunar topography: fine elevation and coarse curvature. Both metrics are isotropic, deterministic, slope-independent, and coordinate-agnostic. Fine (detrended) elevation is acquired by subtracting the coarse elevation from the original topography and contains features that are smaller than the coarse-graining length-scale. Coarse curvature is the Laplacian of coarsened topography, and naturally quantifies the curvature at any scale and indicates whether a location is elevated or depressed relative to its neighborhood at that scale. We find that highlands and maria have distinct roughness characteristics at all length-scales. Our topographic spectra reveal four scale-breaks that mark characteristic shifts in surface roughness: 100, 300, 1,000, and 4,000 km. Comparing fine elevation distributions between maria and highlands, we show that maria fine elevation is biased toward smaller-magnitude elevations and that the maria–highland discrepancies are more pronounced at larger length-scales. We also provide local examples of selected regions to demonstrate that these metrics can successfully distinguish geological features of different length-scales.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.