{"title":"AAV9-mediated CIRP gene transfer protects against cardiac dysfunction and remodelling in a rat model of myocardial infarction","authors":"Peng Zhong, Shuang Yang, Can Fang, Yanjun Li, Siwei Song, Minxiao Chen, Jingru Chen","doi":"10.1111/jcmm.70084","DOIUrl":null,"url":null,"abstract":"<p>Cold-inducible RNA-binding protein (CIRP) is a stress–response protein that has been shown to protect cardiomyocytes under a variety of stress conditions from apoptosis. Our recent study showed that the expression of CIRP protein in the heart was downregulated in patients with heart failure and an animal model of ischaemia heart failure, but its role in heart failure is still unknown. The present study aimed at evaluating the potential role of CIRP on the heart in an animal model of myocardial infarction (MI). MI model of rats was induced by the ligation of the left coronary artery. CIRP overexpression was mediated by direct intracardiac injection of adeno-associated virus serotype 9 (AAV9) vectors carrying a CIRP coding sequence with a cardiac-specific promoter before the induction of the MI model. The effects of CIRP elevation on MI-induced heart were analysed through echocardiographic, pathological and molecular analysis. Our results showed that the intracardiac injection of AAV9 successfully mediated CIRP upregulation in cardiomyocytes. Upregulation of cardiac CIRP prevented MI-induced cardiac dysfunction and adverse remodelling, coupled with the reduced inflammatory response in the heart. Collectively, these results demonstrated the beneficial role of intracellular CIRP on the heart and suggest that CIRP may be a therapeutic target in ischaemic heart disease.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"28 19","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70084","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cold-inducible RNA-binding protein (CIRP) is a stress–response protein that has been shown to protect cardiomyocytes under a variety of stress conditions from apoptosis. Our recent study showed that the expression of CIRP protein in the heart was downregulated in patients with heart failure and an animal model of ischaemia heart failure, but its role in heart failure is still unknown. The present study aimed at evaluating the potential role of CIRP on the heart in an animal model of myocardial infarction (MI). MI model of rats was induced by the ligation of the left coronary artery. CIRP overexpression was mediated by direct intracardiac injection of adeno-associated virus serotype 9 (AAV9) vectors carrying a CIRP coding sequence with a cardiac-specific promoter before the induction of the MI model. The effects of CIRP elevation on MI-induced heart were analysed through echocardiographic, pathological and molecular analysis. Our results showed that the intracardiac injection of AAV9 successfully mediated CIRP upregulation in cardiomyocytes. Upregulation of cardiac CIRP prevented MI-induced cardiac dysfunction and adverse remodelling, coupled with the reduced inflammatory response in the heart. Collectively, these results demonstrated the beneficial role of intracellular CIRP on the heart and suggest that CIRP may be a therapeutic target in ischaemic heart disease.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.