Essential Fluidics for a Flow Cytometer

Pearlson Prashanth Austin Suthanthiraraj, Andrew P. Shreve, Steven W. Graves
{"title":"Essential Fluidics for a Flow Cytometer","authors":"Pearlson Prashanth Austin Suthanthiraraj,&nbsp;Andrew P. Shreve,&nbsp;Steven W. Graves","doi":"10.1002/cpz1.1124","DOIUrl":null,"url":null,"abstract":"<p>Flow cytometry is an inherently fluidic process that flows particles on a one-by-one basis through a sensing region to discretely measure their optical and physical properties. It can be used to analyze particles ranging in size from nanoparticles to whole organisms (e.g., zebrafish). It has particular value for blood analysis, and thus most instruments are fluidically optimized for particles that are comparable in size to a typical blood cell. The principles of fluid dynamics allow for particles of such size to be precisely positioned in flow as they pass through sensing regions that are tens of microns in length at linear velocities of meters per second. Such fluidic systems enable discrete analysis of cell-sized particles at rates approaching 100 kHz. For larger particles, the principles of fluidics greatly reduce the achievable rates, but such high rates of data acquisition for cell-sized particles allow rapid collection of information on many thousands to millions of cells and provides for research and clinical measurements of both rare and common cell populations with a high degree of statistical confidence. Additionally, flow cytometers can accurately count particles via the use of volumetric sample delivery and can be coupled with high-throughput sampling technologies to greatly increase the rate at which independent samples can be delivered to the system. Due to the combination of high analysis rates, sensitive multiparameter measurements, high-throughput sampling, and accurate counting, flow cytometry analysis is the gold standard for many critical applications in clinical, research, pharmaceutical, and environmental areas. Beyond the power of flow cytometry as an analytical technique, the fluidic pathway can be coupled with a sorting mechanism to collect particles based on desired properties. We present an overview of fluidic systems that enable flow cytometry–based analysis and sorting. We introduce historical approaches, explanations of commonly implemented fluidics, and brief discussions of potential future fluidics where appropriate. © 2024 Wiley Periodicals LLC.</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"4 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.1124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Flow cytometry is an inherently fluidic process that flows particles on a one-by-one basis through a sensing region to discretely measure their optical and physical properties. It can be used to analyze particles ranging in size from nanoparticles to whole organisms (e.g., zebrafish). It has particular value for blood analysis, and thus most instruments are fluidically optimized for particles that are comparable in size to a typical blood cell. The principles of fluid dynamics allow for particles of such size to be precisely positioned in flow as they pass through sensing regions that are tens of microns in length at linear velocities of meters per second. Such fluidic systems enable discrete analysis of cell-sized particles at rates approaching 100 kHz. For larger particles, the principles of fluidics greatly reduce the achievable rates, but such high rates of data acquisition for cell-sized particles allow rapid collection of information on many thousands to millions of cells and provides for research and clinical measurements of both rare and common cell populations with a high degree of statistical confidence. Additionally, flow cytometers can accurately count particles via the use of volumetric sample delivery and can be coupled with high-throughput sampling technologies to greatly increase the rate at which independent samples can be delivered to the system. Due to the combination of high analysis rates, sensitive multiparameter measurements, high-throughput sampling, and accurate counting, flow cytometry analysis is the gold standard for many critical applications in clinical, research, pharmaceutical, and environmental areas. Beyond the power of flow cytometry as an analytical technique, the fluidic pathway can be coupled with a sorting mechanism to collect particles based on desired properties. We present an overview of fluidic systems that enable flow cytometry–based analysis and sorting. We introduce historical approaches, explanations of commonly implemented fluidics, and brief discussions of potential future fluidics where appropriate. © 2024 Wiley Periodicals LLC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流式细胞仪的基本流体技术
流式细胞仪是一种固有的流体过程,可使颗粒逐一流经传感区域,从而离散地测量其光学和物理特性。它可用于分析从纳米颗粒到整个生物体(如斑马鱼)等各种大小的颗粒。它对血液分析具有特殊价值,因此大多数仪器都针对与典型血细胞大小相当的颗粒进行了流体优化。根据流体动力学原理,这种大小的微粒在以每秒数米的线速度通过数十微米长的传感区域时,可以在流动中精确定位。这种流体系统能够以接近 100 kHz 的速度对细胞大小的颗粒进行离散分析。对于较大的颗粒,流体力学原理大大降低了可实现的速率,但对于细胞大小的颗粒,如此高的数据采集速率可快速收集成千上万到数百万个细胞的信息,并以高度的统计置信度对稀有和常见细胞群进行研究和临床测量。此外,流式细胞仪通过使用容积式样本输送可对颗粒进行精确计数,并可与高通量采样技术相结合,大大提高向系统输送独立样本的速度。由于集高分析率、灵敏的多参数测量、高通量采样和精确计数于一身,流式细胞仪分析成为临床、研究、制药和环境领域许多关键应用的黄金标准。除了流式细胞仪作为分析技术的强大功能外,流体通道还可与分选机制相结合,根据所需的特性收集颗粒。我们将概述可实现基于流式细胞仪的分析和分拣的流体系统。我们介绍了历史方法,解释了常用的流体技术,并在适当的地方简要讨论了潜在的未来流体技术。© 2024 Wiley Periodicals LLC.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
DMS-MapSeq Analysis of Antisense Oligonucleotide Binding to lncRNA PANDA Multi-site Ultrasound-guided Fine Needle Aspiration to Study Cells and Soluble Factors From Human Lymph Nodes Analysis of Free Oligosaccharides in Urine by High-Performance Liquid Chromatography–Tandem Mass Spectrometry Synthesis and Application of a Caged Bioluminescent Probe for the Immunoproteasome Engineering and Evaluating Vascularized Organotypic Spheroids On-Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1