Targeted C-to-T Base Editing in the Arabidopsis Plastid Genome.

Issei Nakazato, Shin-Ichi Arimura
{"title":"Targeted C-to-T Base Editing in the Arabidopsis Plastid Genome.","authors":"Issei Nakazato, Shin-Ichi Arimura","doi":"10.1002/cpz1.70075","DOIUrl":null,"url":null,"abstract":"<p><p>Arabidopsis thaliana, particularly the ecotype Columbia-0 (Col-0), has been extensively employed in the study of genetics of the nuclear genome. However, the difficulty of modifying the plastid genome of Col-0, the most widely used ecotype, has hindered investigation of the functional interactions between nuclear-encoded and plastid-encoded genes in this ecotype. Recently, we achieved targeted base editing, substituting a specific C:G pair with a T:A pair in the plastid genome of Col-0 through the application of genome-editing technology. This article introduces the method employed to accomplish this targeted base editing. The process involves four steps: (i) designing and constructing a binary vector encoding the genome-editing enzyme, (ii) introducing the binary vector into the nuclear genome of Col-0 via floral dipping, (iii) identifying base-edited plants, and (iv) verifying inheritance of the edited base(s) by the next generation. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Design and construction of a binary vector encoding ptpTALECD or ptpTALECD_v2 Basic Protocol 2: Agrobacterium-mediated introduction of a binary vector into the Arabidopsis nuclear genome Basic Protocol 3: Selection of plants harboring T-DNA in the nucleus and detection of base editing in the plastid genome.</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"5 1","pages":"e70075"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpz1.70075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arabidopsis thaliana, particularly the ecotype Columbia-0 (Col-0), has been extensively employed in the study of genetics of the nuclear genome. However, the difficulty of modifying the plastid genome of Col-0, the most widely used ecotype, has hindered investigation of the functional interactions between nuclear-encoded and plastid-encoded genes in this ecotype. Recently, we achieved targeted base editing, substituting a specific C:G pair with a T:A pair in the plastid genome of Col-0 through the application of genome-editing technology. This article introduces the method employed to accomplish this targeted base editing. The process involves four steps: (i) designing and constructing a binary vector encoding the genome-editing enzyme, (ii) introducing the binary vector into the nuclear genome of Col-0 via floral dipping, (iii) identifying base-edited plants, and (iv) verifying inheritance of the edited base(s) by the next generation. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Design and construction of a binary vector encoding ptpTALECD or ptpTALECD_v2 Basic Protocol 2: Agrobacterium-mediated introduction of a binary vector into the Arabidopsis nuclear genome Basic Protocol 3: Selection of plants harboring T-DNA in the nucleus and detection of base editing in the plastid genome.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
Simple Isolation of Human Bone Marrow Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells. Targeted C-to-T Base Editing in the Arabidopsis Plastid Genome. A Comprehensive Stereology Method for Quantitative Evaluation of Neuronal Injury, Neurodegeneration, and Neurogenesis in Brain Disorders Biotin-Based Northern Blotting (BiNoB): A Cost-Efficient Alternative for Detection of Small RNAs Development of a Microphysiological Cartilage-on-Chip Platform for Dynamic Biomechanical Stimulation of Three-Dimensional Encapsulated Chondrocytes in Agarose Hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1