Mustafa Majid Rashak Al-Fartoos, Anurag Roy, Tapas K. Mallick, Asif Ali Tahir
{"title":"A semi-transparent thermoelectric glazing nanogenerator with aluminium doped zinc oxide and copper iodide thin films","authors":"Mustafa Majid Rashak Al-Fartoos, Anurag Roy, Tapas K. Mallick, Asif Ali Tahir","doi":"10.1038/s44172-024-00291-4","DOIUrl":null,"url":null,"abstract":"To address the pressing need for reducing building energy consumption and combating climate change, thermoelectric glazing (TEGZ) presents a promising solution. This technology harnesses waste heat from buildings and converts it into electricity, while maintaining comfortable indoor temperatures. Here, we developed a TEGZ using cost-effective materials, specifically aluminium-doped zinc oxide (AZO) and copper iodide (CuI). Both AZO and CuI exhibit a high figure of merit (ZT), a key indicator of thermoelectric efficiency, with values of 1.37 and 0.72, respectively, at 340 K, demonstrating their strong potential for efficient heat-to-electricity conversion. Additionally, we fabricated an AZO-CuI based TEGZ prototype (5 × 5 cm²), incorporating eight nanogenerators, each producing 32 nW at 340 K. Early testing of the prototype showed a notable temperature differential of 22.5 °C between the outer and inner surfaces of the window glazing. These results suggest TEGZ could advance building energy efficiency, offering a futuristic approach to sustainable build environment. A thermoelectric glazing prototype made from cost-effective aluminium-doped zinc oxide and copper iodide nanogenerators achieves a 22.5 °C temperature difference on either side of the glaze, harvesting electricity from the differential. Such glazes are critical for increasing energy efficiency in the built environment.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00291-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00291-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To address the pressing need for reducing building energy consumption and combating climate change, thermoelectric glazing (TEGZ) presents a promising solution. This technology harnesses waste heat from buildings and converts it into electricity, while maintaining comfortable indoor temperatures. Here, we developed a TEGZ using cost-effective materials, specifically aluminium-doped zinc oxide (AZO) and copper iodide (CuI). Both AZO and CuI exhibit a high figure of merit (ZT), a key indicator of thermoelectric efficiency, with values of 1.37 and 0.72, respectively, at 340 K, demonstrating their strong potential for efficient heat-to-electricity conversion. Additionally, we fabricated an AZO-CuI based TEGZ prototype (5 × 5 cm²), incorporating eight nanogenerators, each producing 32 nW at 340 K. Early testing of the prototype showed a notable temperature differential of 22.5 °C between the outer and inner surfaces of the window glazing. These results suggest TEGZ could advance building energy efficiency, offering a futuristic approach to sustainable build environment. A thermoelectric glazing prototype made from cost-effective aluminium-doped zinc oxide and copper iodide nanogenerators achieves a 22.5 °C temperature difference on either side of the glaze, harvesting electricity from the differential. Such glazes are critical for increasing energy efficiency in the built environment.