Lighting up arginine metabolism reveals its functional diversity in physiology and pathology

IF 27.7 1区 生物学 Q1 CELL BIOLOGY Cell metabolism Pub Date : 2024-10-15 DOI:10.1016/j.cmet.2024.09.011
Rui Li, Yan Li, Kun Jiang, Lijuan Zhang, Ting Li, Aihua Zhao, Zhuo Zhang, Yale Xia, Kun Ge, Yaqiong Chen, Chengnuo Wang, Weitao Tang, Shuning Liu, Xiaoxi Lin, Yuqin Song, Jie Mei, Chun Xiao, Aoxue Wang, Yejun Zou, Xie Li, Yuzheng Zhao
{"title":"Lighting up arginine metabolism reveals its functional diversity in physiology and pathology","authors":"Rui Li, Yan Li, Kun Jiang, Lijuan Zhang, Ting Li, Aihua Zhao, Zhuo Zhang, Yale Xia, Kun Ge, Yaqiong Chen, Chengnuo Wang, Weitao Tang, Shuning Liu, Xiaoxi Lin, Yuqin Song, Jie Mei, Chun Xiao, Aoxue Wang, Yejun Zou, Xie Li, Yuzheng Zhao","doi":"10.1016/j.cmet.2024.09.011","DOIUrl":null,"url":null,"abstract":"Arginine is one of the most metabolically versatile amino acids and plays pivotal roles in diverse biological and pathological processes; however, sensitive tracking of arginine dynamics <em>in situ</em> remains technically challenging. Here, we engineer high-performance fluorescent biosensors, denoted sensitive to arginine (STAR), to illuminate arginine metabolism in cells, mice, and clinical samples. Utilizing STAR, we demonstrate the effects of different amino acids in regulating intra- and extracellular arginine levels. STAR enabled live-cell monitoring of arginine fluctuations during macrophage activation, phagocytosis, efferocytosis, and senescence and revealed cellular senescence depending on arginine availability. Moreover, a simple and fast assay based on STAR revealed that serum arginine levels tended to increase with age, and the elevated serum arginine level is a potential indicator for discriminating the progression and severity of vitiligo. Collectively, our study provides important insights into the metabolic and functional roles of arginine, as well as its potential in diagnostic and therapeutic applications.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"56 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.09.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Arginine is one of the most metabolically versatile amino acids and plays pivotal roles in diverse biological and pathological processes; however, sensitive tracking of arginine dynamics in situ remains technically challenging. Here, we engineer high-performance fluorescent biosensors, denoted sensitive to arginine (STAR), to illuminate arginine metabolism in cells, mice, and clinical samples. Utilizing STAR, we demonstrate the effects of different amino acids in regulating intra- and extracellular arginine levels. STAR enabled live-cell monitoring of arginine fluctuations during macrophage activation, phagocytosis, efferocytosis, and senescence and revealed cellular senescence depending on arginine availability. Moreover, a simple and fast assay based on STAR revealed that serum arginine levels tended to increase with age, and the elevated serum arginine level is a potential indicator for discriminating the progression and severity of vitiligo. Collectively, our study provides important insights into the metabolic and functional roles of arginine, as well as its potential in diagnostic and therapeutic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示精氨酸代谢在生理学和病理学中的功能多样性
精氨酸是代谢能力最强的氨基酸之一,在多种生物和病理过程中发挥着关键作用;然而,原位灵敏跟踪精氨酸动态在技术上仍具有挑战性。在这里,我们设计了高性能的荧光生物传感器(对精氨酸敏感(STAR))来阐明细胞、小鼠和临床样本中的精氨酸代谢。利用 STAR,我们展示了不同氨基酸在调节细胞内和细胞外精氨酸水平方面的作用。STAR 能够活细胞监测巨噬细胞活化、吞噬、排泄和衰老过程中的精氨酸波动,并揭示了细胞衰老取决于精氨酸的可用性。此外,一种基于 STAR 的简单快速的检测方法显示,血清精氨酸水平随着年龄的增长呈上升趋势,而血清精氨酸水平的升高是判别白癜风进展和严重程度的一个潜在指标。总之,我们的研究为精氨酸的代谢和功能作用及其在诊断和治疗中的应用潜力提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell metabolism
Cell metabolism 生物-内分泌学与代谢
CiteScore
48.60
自引率
1.40%
发文量
173
审稿时长
2.5 months
期刊介绍: Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others. Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.
期刊最新文献
Acute and circadian feedforward regulation of agouti-related peptide hunger neurons A famsin-glucagon axis mediates glucose homeostasis Early downmodulation of tumor glycolysis predicts response to fasting-mimicking diet in triple-negative breast cancer patients Unveiling adipose populations linked to metabolic health in obesity FcRn-dependent IgG accumulation in adipose tissue unmasks obesity pathophysiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1