High Energy Sulfide-Based All-Solid-State Lithium Batteries Enabled by Single-Crystal Li-Rich Cathodes

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-09-30 DOI:10.1021/acsenergylett.4c0176410.1021/acsenergylett.4c01764
Yuqi Wu, Cheng Li, Xuefan Zheng, Wengao Zhao*, Huanran Wang, Jiabao Gu, Yong Cheng, Yipeng Lin, Yu Su, Fucheng Ren, Dan Feng, Jun Liu, Jinxue Peng, Zhongwei Lv, Zhenyu Wang, Torsten Brezesinski, Zhengliang Gong* and Yong Yang*, 
{"title":"High Energy Sulfide-Based All-Solid-State Lithium Batteries Enabled by Single-Crystal Li-Rich Cathodes","authors":"Yuqi Wu,&nbsp;Cheng Li,&nbsp;Xuefan Zheng,&nbsp;Wengao Zhao*,&nbsp;Huanran Wang,&nbsp;Jiabao Gu,&nbsp;Yong Cheng,&nbsp;Yipeng Lin,&nbsp;Yu Su,&nbsp;Fucheng Ren,&nbsp;Dan Feng,&nbsp;Jun Liu,&nbsp;Jinxue Peng,&nbsp;Zhongwei Lv,&nbsp;Zhenyu Wang,&nbsp;Torsten Brezesinski,&nbsp;Zhengliang Gong* and Yong Yang*,&nbsp;","doi":"10.1021/acsenergylett.4c0176410.1021/acsenergylett.4c01764","DOIUrl":null,"url":null,"abstract":"<p >High-capacity Li-rich Mn-based oxides (LRMOs) show great potential for enhancing the energy density of all-solid-state lithium batteries (ASSLBs). However, the intrinsically low electronic/ionic conductivity of LRMOs and bulk structural degradation lead to an inferior electrochemical performance. Herein, a single-crystal Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub> (SC- LRMO) cathode is developed to address the challenges associated with charge-transport limitations and mechanical degradation of conventional polycrystalline (PC)-LRMO in ASSLBs. The results indicate that composite cathodes using small SC-LRMO achieve excellent electrochemical performance. Specifically, SC-LRMO not only delivers a high specific capacity of 316 mAh g<sup>–1</sup> at 0.05C but also exhibits a capacity retention of 86% after 300 cycles at 1C, outperforming the PC-LRMO (243 mAh g<sup>–1</sup>, 84%). Comprehensive characterization reveals that the small single-crystal microstructure of SC-LRMO facilitates electrochemical reaction and mitigates detrimental mechanical degradation. Overall, this work expedites the practical application of LRMO cathodes in high-energy-density ASSLBs through dedicated morphology design.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 10","pages":"5156–5165 5156–5165"},"PeriodicalIF":19.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c01764","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-capacity Li-rich Mn-based oxides (LRMOs) show great potential for enhancing the energy density of all-solid-state lithium batteries (ASSLBs). However, the intrinsically low electronic/ionic conductivity of LRMOs and bulk structural degradation lead to an inferior electrochemical performance. Herein, a single-crystal Li1.2Ni0.13Mn0.54Co0.13O2 (SC- LRMO) cathode is developed to address the challenges associated with charge-transport limitations and mechanical degradation of conventional polycrystalline (PC)-LRMO in ASSLBs. The results indicate that composite cathodes using small SC-LRMO achieve excellent electrochemical performance. Specifically, SC-LRMO not only delivers a high specific capacity of 316 mAh g–1 at 0.05C but also exhibits a capacity retention of 86% after 300 cycles at 1C, outperforming the PC-LRMO (243 mAh g–1, 84%). Comprehensive characterization reveals that the small single-crystal microstructure of SC-LRMO facilitates electrochemical reaction and mitigates detrimental mechanical degradation. Overall, this work expedites the practical application of LRMO cathodes in high-energy-density ASSLBs through dedicated morphology design.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用单晶富锂阴极实现高能硫化物全固态锂电池
高容量富锂锰基氧化物(LRMOs)在提高全固态锂电池(ASSLBs)能量密度方面显示出巨大潜力。然而,LRMOs 固有的低电子/离子电导率和块体结构退化导致其电化学性能较差。本文开发了一种单晶 Li1.2Ni0.13Mn0.54Co0.13O2(SC- LRMO)阴极,以解决 ASSLB 中传统多晶 (PC) -LRMO 的电荷传输限制和机械降解带来的挑战。研究结果表明,使用小型 SC-LRMO 的复合阴极具有优异的电化学性能。具体来说,SC-LRMO 不仅能在 0.05C 温度下提供 316 mAh g-1 的高比容量,而且在 1C 温度下循环 300 次后的容量保持率高达 86%,优于 PC-LRMO (243 mAh g-1,84%)。综合表征结果表明,SC-LRMO 的小单晶微观结构有利于电化学反应,并能减轻有害的机械降解。总之,这项工作通过专门的形态设计,加快了 LRMO 阴极在高能量密度 ASSLB 中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Unraveling the Ion-Accumulation-Induced Potential Limitations of MXene-Based Supercapacitors Biomimetic Inorganic–Organic Protective Layer for Highly Stable and Reversible Zn Anodes Spiro-OMeTAD: Unique Redox Chemistry Driving The Hole Transport In Operando Visualization of Polymerized Ionic Liquid Electrolyte Migration in Solid-State Lithium Batteries Long-Cycling Lithium–Sulfur Batteries Enabled by Reactivating Inactive Lithium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1