Mi Ran Woo , Jung Suk Kim , Seunghyun Cheon , Sang Hun Ji , Seonghyeon Park , Sanghyun Woo , Jong Oh Kim , Sung Giu Jin , Han-Gon Choi
{"title":"Microneedles integrated with crystallinity control for poorly water-soluble drugs: Enhanced bioavailability and innovative controlled release system","authors":"Mi Ran Woo , Jung Suk Kim , Seunghyun Cheon , Sang Hun Ji , Seonghyeon Park , Sanghyun Woo , Jong Oh Kim , Sung Giu Jin , Han-Gon Choi","doi":"10.1016/j.matdes.2024.113371","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this study was to develop innovative microneedles with drug crystallinity control for the fast or sustained release of poorly water-soluble drugs. Povidone was determined as a suitable polymer following hydrophilic polymer testing using solubilization screening technique. Microneedles were fabricated by altering the drug-to-polymer weight ratios. Their mechanical properties, crystallinity, solubility, release, skin permeability and transdermal pharmacokinetics in rats were assessed. The optimal crystalline and amorphous microneedles were composed of drug/polymer at weight ratios of 1:0.03 and 1:2.5, respectively. They showed excellent insertion in rat skin with a puncture rate above 80%. Compared to drug powder or solution, they increased drug solubility, release and skin permeability. Crystalline microneedles gave sustained release and plasma concentration profiles, while amorphous microneedles provided a fast profile. Amorphous microneedles offered significantly faster T<sub>max</sub> and two-fold higher area under the concentration–time curve (AUC), indicating better transdermal bioavailability. In the safety test, microneedle-treated rat skin was recovered to normal within three days without any irritations. Thus, the drug crystallinity could play a significant role in the release of microneedles, suggesting their potential as a transdermal drug delivery system for controlling the release of poorly water-soluble drugs and improving their transdermal bioavailability.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113371"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007469","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study was to develop innovative microneedles with drug crystallinity control for the fast or sustained release of poorly water-soluble drugs. Povidone was determined as a suitable polymer following hydrophilic polymer testing using solubilization screening technique. Microneedles were fabricated by altering the drug-to-polymer weight ratios. Their mechanical properties, crystallinity, solubility, release, skin permeability and transdermal pharmacokinetics in rats were assessed. The optimal crystalline and amorphous microneedles were composed of drug/polymer at weight ratios of 1:0.03 and 1:2.5, respectively. They showed excellent insertion in rat skin with a puncture rate above 80%. Compared to drug powder or solution, they increased drug solubility, release and skin permeability. Crystalline microneedles gave sustained release and plasma concentration profiles, while amorphous microneedles provided a fast profile. Amorphous microneedles offered significantly faster Tmax and two-fold higher area under the concentration–time curve (AUC), indicating better transdermal bioavailability. In the safety test, microneedle-treated rat skin was recovered to normal within three days without any irritations. Thus, the drug crystallinity could play a significant role in the release of microneedles, suggesting their potential as a transdermal drug delivery system for controlling the release of poorly water-soluble drugs and improving their transdermal bioavailability.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.