Modeling, assessment and characterization of soiling on PV Technologies. Toward a Better understanding of the Relation between dust deposition and performance losses
Maryam Mehdi , Ricardo Conceição , Nabil Ammari , Ahmed Alami Merrouni , José González-Aguilar , Mohamed Dahmani
{"title":"Modeling, assessment and characterization of soiling on PV Technologies. Toward a Better understanding of the Relation between dust deposition and performance losses","authors":"Maryam Mehdi , Ricardo Conceição , Nabil Ammari , Ahmed Alami Merrouni , José González-Aguilar , Mohamed Dahmani","doi":"10.1016/j.seta.2024.104023","DOIUrl":null,"url":null,"abstract":"<div><div>Soiling is a critical, site-specific challenge that affects the performance and economic viability of photovoltaic power plants. This study evaluates the effectiveness of an outdoor microscopy method under the specific climatic conditions and dust composition of the Mid-south region of Morocco. Semi-empirical models were developed to correlate the Soiling Coverage Index with losses in optical and electrical performance. Additionally, a comprehensive analysis of local dust, encompassing its chemical composition, morphology, and size distribution, was conducted. Results indicate quartz as the predominant mineral in Benguerir city’s dust particles, with diameters ranging from 0 μm to 26 μm. Additionally, following a 2-week exposure with no rainfall, a dust density of 2.5 g/m2 accumulated on the deployed glass coupons, resulting in a soiling ratio of 6.9 % and a relative transmittance loss of 15.19 %. The surface coverage index, as calculated by the outdoor microscope, was 9.16 %. Furthermore, the evaluation of this metric revealed strong positive correlations (<em>r<sup>2</sup></em> = 0.95 to 0.99) with key soiling indicators such as dust density, soiling ratio, and transmittance loss. These findings underscore the efficacy of the outdoor microscope as a fast, low-cost, and reliable soiling monitoring sensor, offering valuable insights for future monitoring and mitigation efforts.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 104023"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138824004193","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Soiling is a critical, site-specific challenge that affects the performance and economic viability of photovoltaic power plants. This study evaluates the effectiveness of an outdoor microscopy method under the specific climatic conditions and dust composition of the Mid-south region of Morocco. Semi-empirical models were developed to correlate the Soiling Coverage Index with losses in optical and electrical performance. Additionally, a comprehensive analysis of local dust, encompassing its chemical composition, morphology, and size distribution, was conducted. Results indicate quartz as the predominant mineral in Benguerir city’s dust particles, with diameters ranging from 0 μm to 26 μm. Additionally, following a 2-week exposure with no rainfall, a dust density of 2.5 g/m2 accumulated on the deployed glass coupons, resulting in a soiling ratio of 6.9 % and a relative transmittance loss of 15.19 %. The surface coverage index, as calculated by the outdoor microscope, was 9.16 %. Furthermore, the evaluation of this metric revealed strong positive correlations (r2 = 0.95 to 0.99) with key soiling indicators such as dust density, soiling ratio, and transmittance loss. These findings underscore the efficacy of the outdoor microscope as a fast, low-cost, and reliable soiling monitoring sensor, offering valuable insights for future monitoring and mitigation efforts.
期刊介绍:
Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.