{"title":"A study into the impact of tooth root transition curve morphology on the bending fatigue life of gears","authors":"Cheng Wang","doi":"10.1016/j.ijfatigue.2024.108643","DOIUrl":null,"url":null,"abstract":"<div><div>Tooth fracture is a prevalent failure mode that is intimately related to the bending strength of gears. Among the myriad factors influencing gear bending fatigue life, the morphology of the tooth root transition curve stands out as a crucial one, intricately tied to the gear’s resistance to bending fatigue. However, despite its significance, related research efforts, particularly experimental studies that consider cost factors, are relatively scarce in the current research landscape. Therefore, this paper first theoretically examines the influence of the tooth root transition curve morphology on the bending stress of gear teeth. Subsequently, bending fatigue experiments are conducted on gears featuring three typical tooth root transition curve morphologies, and the S-N curves for gears with these different morphologies are summarized. The findings reveal that adopting the digging-root type tooth root transition curve processing method, coupled with appropriately increasing the radius of the tooth top transition curve on the rack cutter, suitably reducing the distance between the rack tooth profile line and the tangent of the tooth root transition curve, and meticulously controlling the roughness of the tooth root transition curve, will significantly enhance the bending fatigue strength and prolong the bending fatigue life of the gear.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108643"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005024","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tooth fracture is a prevalent failure mode that is intimately related to the bending strength of gears. Among the myriad factors influencing gear bending fatigue life, the morphology of the tooth root transition curve stands out as a crucial one, intricately tied to the gear’s resistance to bending fatigue. However, despite its significance, related research efforts, particularly experimental studies that consider cost factors, are relatively scarce in the current research landscape. Therefore, this paper first theoretically examines the influence of the tooth root transition curve morphology on the bending stress of gear teeth. Subsequently, bending fatigue experiments are conducted on gears featuring three typical tooth root transition curve morphologies, and the S-N curves for gears with these different morphologies are summarized. The findings reveal that adopting the digging-root type tooth root transition curve processing method, coupled with appropriately increasing the radius of the tooth top transition curve on the rack cutter, suitably reducing the distance between the rack tooth profile line and the tangent of the tooth root transition curve, and meticulously controlling the roughness of the tooth root transition curve, will significantly enhance the bending fatigue strength and prolong the bending fatigue life of the gear.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.