首页 > 最新文献

International Journal of Fatigue最新文献

英文 中文
Physical information-enhanced machine learning method for high cycle fatigue strength prediction of foreign object damaged aeroengine blades 基于物理信息增强的机器学习方法的航空发动机叶片外物损伤高周疲劳强度预测
IF 6 2区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-09 DOI: 10.1016/j.ijfatigue.2026.109540
Yuming Huang, Yibo Shang, Yu Fu, Chen Wang, Qiang Chen, Yun He, Qingyang Shen, Weisi Gao, Shifeng Wen, Weifeng He, Ming Li, Zhifen Zhang, Liucheng Zhou, Zhenhua Zhao
Foreign object damage (FOD) induced fatigue strength attenuation of aeroengine blades is a critical challenge in reliability design, as it is affected by the coupling of multiple factors such as foreign object characteristics, impact angle, and damage morphology. Experimental data in this context often suffer from limited sample size, significant noise, and incomplete feature coverage. Traditional physical empirical methods rely on simplified assumptions, struggling to adapt to nonlinear evolution of complex damage, while pure data-driven models lack physical constraints, tending to overfit or produce physically implausible predictions. To address these limitations, this study proposes a physics-informed enhanced machine learning method for FOD fatigue strength prediction. The core of physical information enhanced-XGBoost (PIE-XGBoost) lies in embedding physical priors from the Peterson empirical formula into the XGBoost loss function and precomputing theoretical fatigue strength using parameters such as damage depth and foreign object diameter as physical constraints throughout training. Additionally, an adaptive physical constraint strength mechanism is introduced to dynamically adjust regularization coefficients via training error, balancing physical constraint guidance in the early stages with data-driven optimization in the later stages. Finally, based on the simulated blade experimental data verification and analysis of FOD blades, the average error of PIE-XGBoost is 3.2%. Compared with the traditional physical empirical formula’s average error of 41.47%, PIE-XGBoost reduces the error by 38.27%, thus verifying the effectiveness of the method. Further application of this method to actual aeroengine blades can provide technical support for aeroengine maintenance, which has high engineering practical significance and application prospects.
航空发动机叶片的外来物损伤疲劳强度衰减受外来物特性、冲击角度和损伤形态等多种因素的耦合影响,是可靠性设计中的一个关键问题。在这种情况下,实验数据往往受到样本量有限,显著噪声和不完整的特征覆盖的影响。传统的物理经验方法依赖于简化的假设,难以适应复杂损伤的非线性演化,而纯粹的数据驱动模型缺乏物理约束,容易过拟合或产生物理上不合理的预测。为了解决这些限制,本研究提出了一种基于物理的增强机器学习方法,用于FOD疲劳强度预测。物理信息增强-XGBoost (PIE-XGBoost)的核心在于将Peterson经验公式中的物理先验嵌入到XGBoost损失函数中,并在整个训练过程中使用损伤深度和异物直径等参数作为物理约束,预计算理论疲劳强度。引入自适应物理约束强度机制,通过训练误差动态调整正则化系数,平衡前期物理约束指导和后期数据驱动优化。最后,基于FOD叶片的模拟叶片实验数据验证和分析,PIE-XGBoost的平均误差为3.2%。与传统物理经验公式的平均误差41.47%相比,PIE-XGBoost将误差降低了38.27%,验证了该方法的有效性。将该方法进一步应用于实际的航空发动机叶片,可为航空发动机维修提供技术支持,具有较高的工程实际意义和应用前景。
{"title":"Physical information-enhanced machine learning method for high cycle fatigue strength prediction of foreign object damaged aeroengine blades","authors":"Yuming Huang, Yibo Shang, Yu Fu, Chen Wang, Qiang Chen, Yun He, Qingyang Shen, Weisi Gao, Shifeng Wen, Weifeng He, Ming Li, Zhifen Zhang, Liucheng Zhou, Zhenhua Zhao","doi":"10.1016/j.ijfatigue.2026.109540","DOIUrl":"https://doi.org/10.1016/j.ijfatigue.2026.109540","url":null,"abstract":"Foreign object damage (FOD) induced fatigue strength attenuation of aeroengine blades is a critical challenge in reliability design, as it is affected by the coupling of multiple factors such as foreign object characteristics, impact angle, and damage morphology. Experimental data in this context often suffer from limited sample size, significant noise, and incomplete feature coverage. Traditional physical empirical methods rely on simplified assumptions, struggling to adapt to nonlinear evolution of complex damage, while pure data-driven models lack physical constraints, tending to overfit or produce physically implausible predictions. To address these limitations, this study proposes a physics-informed enhanced machine learning method for FOD fatigue strength prediction. The core of physical information enhanced-XGBoost (PIE-XGBoost) lies in embedding physical priors from the Peterson empirical formula into the XGBoost loss function and precomputing theoretical fatigue strength using parameters such as damage depth and foreign object diameter as physical constraints throughout training. Additionally, an adaptive physical constraint strength mechanism is introduced to dynamically adjust regularization coefficients via training error, balancing physical constraint guidance in the early stages with data-driven optimization in the later stages. Finally, based on the simulated blade experimental data verification and analysis of FOD blades, the average error of PIE-XGBoost is 3.2%. Compared with the traditional physical empirical formula’s average error of 41.47%, PIE-XGBoost reduces the error by 38.27%, thus verifying the effectiveness of the method. Further application of this method to actual aeroengine blades can provide technical support for aeroengine maintenance, which has high engineering practical significance and application prospects.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"5 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying porosity interaction of real casting pore morphologies in image-based models during fatigue loading 在基于图像的模型中研究疲劳加载过程中真实铸件孔隙形态的相互作用
IF 6 2区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-09 DOI: 10.1016/j.ijfatigue.2026.109559
Niklas Sayer-Duffhauß, Markus Fried, Sebastian Münstermann
With increasing capabilities in non-destructive testing methods, image-based modeling of porosity becomes more widely adopted. While some empirically- and fracture-mechanics-derived criteria exist in literature and standards, image-based models would benefit from a more thorough assessment of porosity interaction. In this paper we model the stress response of pairs of pores in a vast number of possible spatial configurations, using the example of the alloy MAR-M247 and real casting pores, whose morphologies were acquired using computed tomography (CT). Lastly, we compute the interaction distance and derive criteria for non-interaction for two popular types of image-based fatigue models (non-local and global), based on the size of the potentially interacting pores.
随着无损检测技术的不断发展,基于图像的孔隙度建模得到了越来越广泛的应用。虽然文献和标准中存在一些基于经验和断裂力学的标准,但基于图像的模型将受益于对孔隙度相互作用的更全面评估。本文以MAR-M247合金为例,利用计算机断层扫描(CT)获得了实际铸造孔隙的形态,模拟了多种可能空间构型下孔隙对的应力响应。最后,基于潜在相互作用孔隙的大小,我们计算了两种流行的基于图像的疲劳模型(非局部和全局)的相互作用距离,并推导了非相互作用的准则。
{"title":"Studying porosity interaction of real casting pore morphologies in image-based models during fatigue loading","authors":"Niklas Sayer-Duffhauß, Markus Fried, Sebastian Münstermann","doi":"10.1016/j.ijfatigue.2026.109559","DOIUrl":"https://doi.org/10.1016/j.ijfatigue.2026.109559","url":null,"abstract":"With increasing capabilities in non-destructive testing methods, image-based modeling of porosity becomes more widely adopted. While some empirically- and fracture-mechanics-derived criteria exist in literature and standards, image-based models would benefit from a more thorough assessment of porosity interaction. In this paper we model the stress response of pairs of pores in a vast number of possible spatial configurations, using the example of the alloy MAR-M247 and real casting pores, whose morphologies were acquired using computed tomography (CT). Lastly, we compute the interaction distance and derive criteria for non-interaction for two popular types of image-based fatigue models (non-local and global), based on the size of the potentially interacting pores.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"35 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic evaluation on fatigue small cracking characteristics of light metallic alloys under in-situ SEM fatigue tests using the weakest link theory 基于最薄弱环节理论的轻金属合金原位SEM疲劳试验疲劳小裂纹特性概率评价
IF 6 2区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-08 DOI: 10.1016/j.ijfatigue.2026.109557
Yang Xin-Yi, Zhu Li-Na, Xu Zhong-Wei, Wang Xi-Shu
{"title":"Probabilistic evaluation on fatigue small cracking characteristics of light metallic alloys under in-situ SEM fatigue tests using the weakest link theory","authors":"Yang Xin-Yi, Zhu Li-Na, Xu Zhong-Wei, Wang Xi-Shu","doi":"10.1016/j.ijfatigue.2026.109557","DOIUrl":"https://doi.org/10.1016/j.ijfatigue.2026.109557","url":null,"abstract":"","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"72 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time lapse X-ray imaging reveals dual-role significance of hot cracks in high-temperature fatigued L-PBF Hastelloy X 延时X射线成像揭示了高温疲劳L-PBF哈氏合金X热裂纹的双重作用意义
IF 6 2区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-08 DOI: 10.1016/j.ijfatigue.2026.109558
Han Zhang, Weijian Qian, Feifei Hu, Boyu Nie, Liming Lei, Yali Li, Zhe Song, Liangliang Wu, Chengli Dong, Lei Shi, Shengchuan Wu
{"title":"Time lapse X-ray imaging reveals dual-role significance of hot cracks in high-temperature fatigued L-PBF Hastelloy X","authors":"Han Zhang, Weijian Qian, Feifei Hu, Boyu Nie, Liming Lei, Yali Li, Zhe Song, Liangliang Wu, Chengli Dong, Lei Shi, Shengchuan Wu","doi":"10.1016/j.ijfatigue.2026.109558","DOIUrl":"https://doi.org/10.1016/j.ijfatigue.2026.109558","url":null,"abstract":"","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"16 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation and modeling of the superalloy crack growth behavior under combined high and low cycle fatigue 高温合金高、低周复合疲劳下裂纹扩展行为的实验研究与建模
IF 6 2区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-07 DOI: 10.1016/j.ijfatigue.2026.109553
Han Yan, Dawei Huang, Aofei Li, Zhenyu He, Heming Xu, Naixian Hou, Xiaojun Yan
{"title":"Experimental investigation and modeling of the superalloy crack growth behavior under combined high and low cycle fatigue","authors":"Han Yan, Dawei Huang, Aofei Li, Zhenyu He, Heming Xu, Naixian Hou, Xiaojun Yan","doi":"10.1016/j.ijfatigue.2026.109553","DOIUrl":"https://doi.org/10.1016/j.ijfatigue.2026.109553","url":null,"abstract":"","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"17 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CINAS-PINN: Causal inference-based neural architecture search in physics-informed neural networks for fatigue life prediction with welding strain energy 基于物理信息的神经网络中基于因果推理的神经结构搜索,用于焊接应变能疲劳寿命预测
IF 6 2区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-06 DOI: 10.1016/j.ijfatigue.2026.109539
Jiashan Gao, Chao Zhang, Shaoping Wang, Enrico Zio, Yuwei Zhang, Rentong Chen
{"title":"CINAS-PINN: Causal inference-based neural architecture search in physics-informed neural networks for fatigue life prediction with welding strain energy","authors":"Jiashan Gao, Chao Zhang, Shaoping Wang, Enrico Zio, Yuwei Zhang, Rentong Chen","doi":"10.1016/j.ijfatigue.2026.109539","DOIUrl":"https://doi.org/10.1016/j.ijfatigue.2026.109539","url":null,"abstract":"","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"236 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermomechanical fatigue performance of additively manufactured Inconel 939 增材制造Inconel 939的热机械疲劳性能
IF 6 2区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-06 DOI: 10.1016/j.ijfatigue.2026.109552
Ivo Šulák, Markéta Gálíková, Tomáš Babinský, Ladislav Poczklán, Ivo Kuběna, Stefan Guth
{"title":"Thermomechanical fatigue performance of additively manufactured Inconel 939","authors":"Ivo Šulák, Markéta Gálíková, Tomáš Babinský, Ladislav Poczklán, Ivo Kuběna, Stefan Guth","doi":"10.1016/j.ijfatigue.2026.109552","DOIUrl":"https://doi.org/10.1016/j.ijfatigue.2026.109552","url":null,"abstract":"","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"89 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving superior high-cycle fatigue resistance of an extruded TiAl alloy 实现了挤压TiAl合金优异的高周抗疲劳性能
IF 6 2区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-06 DOI: 10.1016/j.ijfatigue.2026.109532
Jiaqi Sheng, Junke Ren, Xiaodong Wang, Hongwei Wang, Yongfeng Liang, Junpin Lin
{"title":"Achieving superior high-cycle fatigue resistance of an extruded TiAl alloy","authors":"Jiaqi Sheng, Junke Ren, Xiaodong Wang, Hongwei Wang, Yongfeng Liang, Junpin Lin","doi":"10.1016/j.ijfatigue.2026.109532","DOIUrl":"https://doi.org/10.1016/j.ijfatigue.2026.109532","url":null,"abstract":"","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"23 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-point S-N curve modification framework from fatigue loads 基于疲劳载荷的两点S-N曲线修正框架
IF 6 2区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-06 DOI: 10.1016/j.ijfatigue.2026.109541
Xu-xiang Yang, Xin Bai, Zhi-xin Dong, Zhen-jun Zhang, Meng-yang Wang, Zhe-feng Zhang
{"title":"Two-point S-N curve modification framework from fatigue loads","authors":"Xu-xiang Yang, Xin Bai, Zhi-xin Dong, Zhen-jun Zhang, Meng-yang Wang, Zhe-feng Zhang","doi":"10.1016/j.ijfatigue.2026.109541","DOIUrl":"https://doi.org/10.1016/j.ijfatigue.2026.109541","url":null,"abstract":"","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"72 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of fretting fatigue life prediction models and application of the critical plane approach to selected literature datasets 评述了微动疲劳寿命预测模型及临界平面法在选定文献数据集上的应用
IF 6 2区 材料科学 Q1 ENGINEERING, MECHANICAL Pub Date : 2026-02-05 DOI: 10.1016/j.ijfatigue.2026.109535
Samira Ghadar, Ali Fatemi
{"title":"A review of fretting fatigue life prediction models and application of the critical plane approach to selected literature datasets","authors":"Samira Ghadar, Ali Fatemi","doi":"10.1016/j.ijfatigue.2026.109535","DOIUrl":"https://doi.org/10.1016/j.ijfatigue.2026.109535","url":null,"abstract":"","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"47 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Fatigue
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1