Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte

IF 5.4 Q2 CHEMISTRY, PHYSICAL Journal of Power Sources Advances Pub Date : 2024-10-15 DOI:10.1016/j.powera.2024.100161
{"title":"Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte","authors":"","doi":"10.1016/j.powera.2024.100161","DOIUrl":null,"url":null,"abstract":"<div><div>Current battery production involves various energy intensive processes and the use of volatile, flammable and/or toxic chemicals. This study explores the potential for using a water-soluble and functional binder, poly(diallyldimethylammonium) (PDADMA) with diethyl phosphate (DEP) as a counter anion, for lithium manganese oxide (LMO) cathodes. By replacing the traditional polyvinylidene fluoride (PVDF) binder and its associated toxic N-methyl-2-pyrrolidone (NMP) solvent, PDADMA-DEP offers a more sustainable and cost-effective solution. Notably, PDADMA-DEP electrodes do not require high-temperature calendaring to achieve high performance unlike PVDF electrodes. X-ray Photoelectron Spectroscopy (XPS) indicated significant interactions between the binder and LMO that enhance stability and ion conduction. The PDADMA-DEP binder demonstrated excellent electrochemical rate capability up to 10C with the conventional organic liquid electrolyte (LP30), outperforming PVDF electrodes. The performance of both binders using a safer and non-volatile ionic liquid electrolyte, specifically 50 mol% LiFSI in N-trimethyl-N-propylammonium bis(fluorosulfonyl)imide, was also investigated to enhance the overall safety and environmental impact of the battery system. IL-based cells utilizing a PDADMA-DEP cathode binder demonstrated a 58 % capacity retention over 500 cycles at 0.5C when cycled at room temperature.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248524000271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Current battery production involves various energy intensive processes and the use of volatile, flammable and/or toxic chemicals. This study explores the potential for using a water-soluble and functional binder, poly(diallyldimethylammonium) (PDADMA) with diethyl phosphate (DEP) as a counter anion, for lithium manganese oxide (LMO) cathodes. By replacing the traditional polyvinylidene fluoride (PVDF) binder and its associated toxic N-methyl-2-pyrrolidone (NMP) solvent, PDADMA-DEP offers a more sustainable and cost-effective solution. Notably, PDADMA-DEP electrodes do not require high-temperature calendaring to achieve high performance unlike PVDF electrodes. X-ray Photoelectron Spectroscopy (XPS) indicated significant interactions between the binder and LMO that enhance stability and ion conduction. The PDADMA-DEP binder demonstrated excellent electrochemical rate capability up to 10C with the conventional organic liquid electrolyte (LP30), outperforming PVDF electrodes. The performance of both binders using a safer and non-volatile ionic liquid electrolyte, specifically 50 mol% LiFSI in N-trimethyl-N-propylammonium bis(fluorosulfonyl)imide, was also investigated to enhance the overall safety and environmental impact of the battery system. IL-based cells utilizing a PDADMA-DEP cathode binder demonstrated a 58 % capacity retention over 500 cycles at 0.5C when cycled at room temperature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用聚(离子液体)粘合剂和离子液体电解质提高锂锰氧化物正极的性能和可持续性
目前的电池生产涉及各种高能耗工艺,并使用挥发性、易燃和/或有毒化学品。本研究探讨了在锂锰氧化物(LMO)阴极中使用水溶性功能性粘合剂聚(二烯丙基二甲基铵)(PDADMA)和磷酸二乙酯(DEP)作为反阴离子的可能性。PDADMA-DEP 取代了传统的聚偏二氟乙烯(PVDF)粘合剂及其相关的有毒 N-甲基-2-吡咯烷酮(NMP)溶剂,提供了一种更具可持续性和成本效益的解决方案。值得注意的是,与 PVDF 电极不同,PDADMA-DEP 电极无需高温压延即可实现高性能。X 射线光电子能谱 (XPS) 显示,粘合剂和 LMO 之间存在显著的相互作用,从而提高了稳定性和离子传导性。PDADMA-DEP 粘合剂在使用传统有机液态电解质(LP30)时,电化学速率可达 10C,性能优于 PVDF 电极。为了提高电池系统的整体安全性和对环境的影响,我们还研究了这两种粘合剂使用更安全、不挥发的离子液体电解质的性能,特别是在 N-三甲基-N-丙基双(氟磺酰)亚胺铵中 50 mol% 的 LiFSI。使用 PDADMA-DEP 阴极粘合剂的基于 IL 的电池在室温下循环 500 次,在 0.5C 下的容量保持率为 58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
期刊最新文献
Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte The implementation of a voltage-based tunneling mechanism in aging models for lithium-ion batteries Electronic structure evolution upon lithiation: A Li K-edge study of silicon oxide anode through X-ray Raman spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1