{"title":"Advancements in Underwater Optical Wireless Communication: Channel Modeling, PAPR Reduction, and Simulations With OFDM","authors":"Liwei Yang;Zeyang Bi;Xue Liang;Lihao Zhao;Jiade Zhang;Jingyi Peng","doi":"10.1109/JPHOT.2024.3475448","DOIUrl":null,"url":null,"abstract":"Compared to underwater radio waves and acoustic communication technology, underwater optical communication technology has emerged as a technical means of underwater data and information transmission. Due to the complexity and volatility of the channel environment and the various factors that affect optical data transmission, there is no standard theoretical model for underwater optical wireless communication (UOWC). This work systematically evaluated and validated several optical attenuation models, leading to the development of an approach that significantly improves the accuracy of optical signal behavior prediction in underwater environments. The simulations using the Monte Carlo algorithm revealed critical insights into signal propagation, enabling more precise modeling of UOWC channels under varying conditions. We developed and validated a novel PTS-Clipping technique that effectively reduces PAPR by up to 15%, outperforming traditional methods and maintaining system efficiency. The novel PTS-Clipping approach achieved a reduction in OFDM signal PAPR from 11.861 dB to as low as 10.228 dB, demonstrating superior performance, particularly in high-order modulation schemes like 16-QAM, where signal integrity is critical. Theoretical analysis is combined with simulation experiments to promote a more robust and efficient UOWC system.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713115/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to underwater radio waves and acoustic communication technology, underwater optical communication technology has emerged as a technical means of underwater data and information transmission. Due to the complexity and volatility of the channel environment and the various factors that affect optical data transmission, there is no standard theoretical model for underwater optical wireless communication (UOWC). This work systematically evaluated and validated several optical attenuation models, leading to the development of an approach that significantly improves the accuracy of optical signal behavior prediction in underwater environments. The simulations using the Monte Carlo algorithm revealed critical insights into signal propagation, enabling more precise modeling of UOWC channels under varying conditions. We developed and validated a novel PTS-Clipping technique that effectively reduces PAPR by up to 15%, outperforming traditional methods and maintaining system efficiency. The novel PTS-Clipping approach achieved a reduction in OFDM signal PAPR from 11.861 dB to as low as 10.228 dB, demonstrating superior performance, particularly in high-order modulation schemes like 16-QAM, where signal integrity is critical. Theoretical analysis is combined with simulation experiments to promote a more robust and efficient UOWC system.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.