Dynamic Global Maximum Power Point Tracking for Partially Shaded PV Arrays in Grid-Connected PV Systems

Georgios I. Orfanoudakis;Emmanouil Lioudakis;Georgios Foteinopoulos;Eftichios Koutroulis;Weimin Wu
{"title":"Dynamic Global Maximum Power Point Tracking for Partially Shaded PV Arrays in Grid-Connected PV Systems","authors":"Georgios I. Orfanoudakis;Emmanouil Lioudakis;Georgios Foteinopoulos;Eftichios Koutroulis;Weimin Wu","doi":"10.1109/JESTIE.2024.3389686","DOIUrl":null,"url":null,"abstract":"Global maximum power point tracking (GMPPT) algorithms can extract the maximum available power from photovoltaic (PV) arrays even under partial shading conditions (PSCs). The existing GMPPT algorithms originate from computationally-intensive optimization (heuristic) or artificial intelligence concepts, which operate in discrete time steps and impose intense variations to the demanded PV array voltage/current. These result in undesirable disturbances, which increase the overall time required for the GMPPT process to complete and affect the quality of power injected to the grid. In this article, a new GMPPT method with low computational complexity is presented, which exploits the dynamic response of the PV system. The proposed GMPPT technique can track the GMPP in significantly less time when applied to PV inverters with high PV-side capacitances, guarantee convergence to the GMPP even under complex PSCs, while also avoiding the aforementioned disturbances. The performance of the proposed GMPPT method is evaluated using an experimental setup incorporating a 2-kW single-phase grid-tied transformerless PV inverter and a rooftop PV array. The experimental results show that it can identify the GMPP in approximately 1 s under various operating conditions, which is more than 95% faster than the power-voltage curve scanning and particle swarm optimization GMPPT algorithms.","PeriodicalId":100620,"journal":{"name":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","volume":"5 4","pages":"1481-1492"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10501931/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global maximum power point tracking (GMPPT) algorithms can extract the maximum available power from photovoltaic (PV) arrays even under partial shading conditions (PSCs). The existing GMPPT algorithms originate from computationally-intensive optimization (heuristic) or artificial intelligence concepts, which operate in discrete time steps and impose intense variations to the demanded PV array voltage/current. These result in undesirable disturbances, which increase the overall time required for the GMPPT process to complete and affect the quality of power injected to the grid. In this article, a new GMPPT method with low computational complexity is presented, which exploits the dynamic response of the PV system. The proposed GMPPT technique can track the GMPP in significantly less time when applied to PV inverters with high PV-side capacitances, guarantee convergence to the GMPP even under complex PSCs, while also avoiding the aforementioned disturbances. The performance of the proposed GMPPT method is evaluated using an experimental setup incorporating a 2-kW single-phase grid-tied transformerless PV inverter and a rooftop PV array. The experimental results show that it can identify the GMPP in approximately 1 s under various operating conditions, which is more than 95% faster than the power-voltage curve scanning and particle swarm optimization GMPPT algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并网光伏系统中部分遮挡光伏阵列的动态全局最大功率点跟踪
全局最大功率点跟踪(GMPPT)算法可以从光伏(PV)阵列中提取最大可用功率,即使在部分遮光条件(PSC)下也是如此。现有的 GMPPT 算法源于计算密集型优化(启发式)或人工智能概念,以离散的时间步长运行,并对所需的光伏阵列电压/电流施加强烈变化。这些变化会产生不良干扰,增加 GMPPT 过程完成所需的总时间,并影响注入电网的电能质量。本文介绍了一种计算复杂度较低的新型 GMPPT 方法,该方法利用了光伏系统的动态响应。当应用于具有高光伏侧电容的光伏逆变器时,所提出的 GMPPT 技术能在更短的时间内跟踪 GMPP,即使在复杂的 PSC 下也能保证收敛到 GMPP,同时还能避免上述干扰。通过实验装置,结合 2 千瓦单相并网无变压器光伏逆变器和屋顶光伏阵列,对所提出的 GMPPT 方法的性能进行了评估。实验结果表明,在各种运行条件下,该方法能在约 1 秒内识别出 GMPP,比功率-电压曲线扫描和粒子群优化 GMPPT 算法快 95% 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Journal of Emerging and Selected Topics in Industrial Electronics Publication Information Officers and Vice Presidents of Co-Sponsoring Societies Information IEEE Industrial Electronics Society Information Multiport Converter With Reduced Part Count for DC Nanogrid Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1