A Stabilized Numerical Scheme to Simulate Synergistic Effect of TID and TDR in Semiconductor Devices

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-09-27 DOI:10.1109/JMMCT.2024.3469280
Tan-Yi Li;Yanning Chen;Nian-En Zhang;Da-Wei Wang;Qi-Wei Zhan;Qi-Chao Wang;Guang-Rong Li;Dongyan Zhao;Wen-Yan Yin
{"title":"A Stabilized Numerical Scheme to Simulate Synergistic Effect of TID and TDR in Semiconductor Devices","authors":"Tan-Yi Li;Yanning Chen;Nian-En Zhang;Da-Wei Wang;Qi-Wei Zhan;Qi-Chao Wang;Guang-Rong Li;Dongyan Zhao;Wen-Yan Yin","doi":"10.1109/JMMCT.2024.3469280","DOIUrl":null,"url":null,"abstract":"The synergistic effects between total ionizing dose (TID) and transient dose rate (TDR) effects are explored. To implement the analysis, a stable 3D parallel numerical scheme is specially developed. Using the control volume finite element tearing and interconnect (CV-FETI) method, the discontinuous boundary conditions can be included with the usual numerical properties. Newton's method is employed to overcome the nonconvergence brought by the nonlinear property of the drift- diffusion model. Compared to with the commercial COMSOL Multiphysics software, our CV-FETIM shows strong numerical stability on unstructured meshes. The proposed method is validated by comparing the numerical results with those calculated using commercial software. Then, this new solver is applied to simulate MOSFET, STI-based LDMOSFET, and FinFET. By adjusting the dose rate, oxide traps, and interface traps, the independent TID, independent TDR, and TID-TDR synergistic effects are investigated. On picosecond or nanosecond timescales, the duration, amplitude, and decline rate of the radiation-induced photocurrent are studied. Moreover, the influence of interface traps on different surfaces is compared. The numerical results indicated that the developed numerical scheme possesses good stability, accuracy, and applicability.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10697282/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The synergistic effects between total ionizing dose (TID) and transient dose rate (TDR) effects are explored. To implement the analysis, a stable 3D parallel numerical scheme is specially developed. Using the control volume finite element tearing and interconnect (CV-FETI) method, the discontinuous boundary conditions can be included with the usual numerical properties. Newton's method is employed to overcome the nonconvergence brought by the nonlinear property of the drift- diffusion model. Compared to with the commercial COMSOL Multiphysics software, our CV-FETIM shows strong numerical stability on unstructured meshes. The proposed method is validated by comparing the numerical results with those calculated using commercial software. Then, this new solver is applied to simulate MOSFET, STI-based LDMOSFET, and FinFET. By adjusting the dose rate, oxide traps, and interface traps, the independent TID, independent TDR, and TID-TDR synergistic effects are investigated. On picosecond or nanosecond timescales, the duration, amplitude, and decline rate of the radiation-induced photocurrent are studied. Moreover, the influence of interface traps on different surfaces is compared. The numerical results indicated that the developed numerical scheme possesses good stability, accuracy, and applicability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟半导体器件中 TID 和 TDR 协同效应的稳定数值方案
探讨了总电离剂量(TID)和瞬态剂量率(TDR)效应之间的协同效应。为实施分析,专门开发了一种稳定的三维并行数值方案。利用控制体积有限元撕裂和互联(CV-FETI)方法,可以将不连续边界条件与通常的数值特性结合起来。采用牛顿法克服了漂移-扩散模型的非线性特性带来的不收敛性。与商用 COMSOL Multiphysics 软件相比,我们的 CV-FETIM 在非结构网格上显示出很强的数值稳定性。通过将数值结果与使用商业软件计算的结果进行比较,验证了所提出的方法。然后,将这种新求解器用于模拟 MOSFET、基于 STI 的 LDMOSFET 和 FinFET。通过调整剂量率、氧化物陷阱和界面陷阱,研究了独立 TID、独立 TDR 和 TID-TDR 协同效应。在皮秒或纳秒时间尺度上,研究了辐射诱导光电流的持续时间、振幅和下降率。此外,还比较了界面陷阱对不同表面的影响。数值结果表明,所开发的数值方案具有良好的稳定性、准确性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Expediting Ionic Conductivity Prediction of Solid-State Battery Electrodes Using Machine Learning Crosstalk Analysis in Passively Addressed Soft Resistive Heating Arrays A Stabilized Numerical Scheme to Simulate Synergistic Effect of TID and TDR in Semiconductor Devices Deep Multiphysics Fields Solver Established on Operator Learning Transformer and Finite Element Method RayProNet: A Neural Point Field Framework for Radio Propagation Modeling in 3D Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1