Non-exchange bias hysteresis loop shifts in dense composites of soft-hard magnetic nanoparticles: New possibilities for simple reference layers in magnetic devices
Pierfrancesco Maltoni, Raúl López-Martín, Elena H. Sánchez, Peter S. Normile, Marianna Vasilakaki, Su Seong Lee, Benito Santos Burgos, Eloy A. López del Castillo, Davide Peddis, Chris Binns, Kalliopi Trohidou, Roland Mathieu, Josep Nogués, José A. De Toro
{"title":"Non-exchange bias hysteresis loop shifts in dense composites of soft-hard magnetic nanoparticles: New possibilities for simple reference layers in magnetic devices","authors":"Pierfrancesco Maltoni, Raúl López-Martín, Elena H. Sánchez, Peter S. Normile, Marianna Vasilakaki, Su Seong Lee, Benito Santos Burgos, Eloy A. López del Castillo, Davide Peddis, Chris Binns, Kalliopi Trohidou, Roland Mathieu, Josep Nogués, José A. De Toro","doi":"10.1007/s42114-024-00972-w","DOIUrl":null,"url":null,"abstract":"<div><p>Exchange bias has been extensively studied in both exchange-coupled thin films and nanoparticle composite systems. However, the role of <i>non</i>-exchange mechanisms in the overall hysteresis loop bias is far from being understood. Here, dense soft-hard binary nanoparticle composites are used not only as a novel tool to unravel the effect of dipolar interactions on the hysteresis loop shift but also as a new strategy to enhance the bias of any magnet exhibiting an asymmetric magnetization reversal. Mixtures of equally sized, 6.8 nm, soft maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>) nanoparticles (no bias—symmetric reversal) and hard cobalt doped γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles (large exchange bias—asymmetric reversal) reveal that, for certain fractions of soft particles, the loop shift of the composite can be significantly larger than the exchange-bias field of the hard particles in the mixture. Simple calculations indicate how this emerging phenomenon can be further enhanced by optimizing the parameters of the hard particles (coercivity and loop asymmetry). In addition, the existence of a dipolar-induced loop shift (“dipolar bias”) is demonstrated both experimentally and theoretically, where, for example, a bias is induced in the initially unbiased γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles due to the dipolar interaction with the exchange-biased hard nanoparticles. These results open a new paradigm in the large field of hysteresis bias and pave the way for novel approaches to tune loop shifts in magnetic hybrid systems beyond interface exchange coupling.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 5","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-00972-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00972-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Exchange bias has been extensively studied in both exchange-coupled thin films and nanoparticle composite systems. However, the role of non-exchange mechanisms in the overall hysteresis loop bias is far from being understood. Here, dense soft-hard binary nanoparticle composites are used not only as a novel tool to unravel the effect of dipolar interactions on the hysteresis loop shift but also as a new strategy to enhance the bias of any magnet exhibiting an asymmetric magnetization reversal. Mixtures of equally sized, 6.8 nm, soft maghemite (γ-Fe2O3) nanoparticles (no bias—symmetric reversal) and hard cobalt doped γ-Fe2O3 nanoparticles (large exchange bias—asymmetric reversal) reveal that, for certain fractions of soft particles, the loop shift of the composite can be significantly larger than the exchange-bias field of the hard particles in the mixture. Simple calculations indicate how this emerging phenomenon can be further enhanced by optimizing the parameters of the hard particles (coercivity and loop asymmetry). In addition, the existence of a dipolar-induced loop shift (“dipolar bias”) is demonstrated both experimentally and theoretically, where, for example, a bias is induced in the initially unbiased γ-Fe2O3 nanoparticles due to the dipolar interaction with the exchange-biased hard nanoparticles. These results open a new paradigm in the large field of hysteresis bias and pave the way for novel approaches to tune loop shifts in magnetic hybrid systems beyond interface exchange coupling.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.