Modulating the optoelectronic characteristics of ZnS through transition metals doping: insights from density functional theory

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Optical and Quantum Electronics Pub Date : 2024-10-16 DOI:10.1007/s11082-024-07580-4
Mohamed Al-Hattab, Younes Chrafih, Abdelhafid Najim, Khalid Rahmani, Omar Bajjou, Jean-Michel Nunzi, Bassim Arkook, Moussab Harb
{"title":"Modulating the optoelectronic characteristics of ZnS through transition metals doping: insights from density functional theory","authors":"Mohamed Al-Hattab,&nbsp;Younes Chrafih,&nbsp;Abdelhafid Najim,&nbsp;Khalid Rahmani,&nbsp;Omar Bajjou,&nbsp;Jean-Michel Nunzi,&nbsp;Bassim Arkook,&nbsp;Moussab Harb","doi":"10.1007/s11082-024-07580-4","DOIUrl":null,"url":null,"abstract":"<div><p>The optoelectronic properties of ZnS doped with transition metals (Cu, Cd, Ag, and Au) are systematically investigated by applying first-principles computations based on the density functional theory (DFT). Various doping concentrations for Cu (5%, 10%, 20%), Cd (5%, 10%, 15%, 20%), Ag (5%, 15%), and Au (5%, 15%, 20%) are explored to examine their impact on the properties of ZnS. Our analysis confirms that all doped structures exhibit direct band gap semiconducting behavior. Notably, the band gap energy decreases with the incorporation of Cd, Ag, and Au, while an increase in Cu content results in a wider band gap. This work also evaluates how these transition metals influence the absorption coefficient, the dielectric constant, the refractive index, and the extinction coefficient of ZnS, providing a comprehensive insight into their effects. Our findings show a good agreement with existing experimental and theoretical data, offering a deep understanding of the optoelectronic properties of doped ZnS semiconductors. This investigation underlines the significance of doping in tailoring the properties of ZnS for enhanced optoelectronic applications, laying the groundwork for further experimental validation and theoretical analysis.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07580-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The optoelectronic properties of ZnS doped with transition metals (Cu, Cd, Ag, and Au) are systematically investigated by applying first-principles computations based on the density functional theory (DFT). Various doping concentrations for Cu (5%, 10%, 20%), Cd (5%, 10%, 15%, 20%), Ag (5%, 15%), and Au (5%, 15%, 20%) are explored to examine their impact on the properties of ZnS. Our analysis confirms that all doped structures exhibit direct band gap semiconducting behavior. Notably, the band gap energy decreases with the incorporation of Cd, Ag, and Au, while an increase in Cu content results in a wider band gap. This work also evaluates how these transition metals influence the absorption coefficient, the dielectric constant, the refractive index, and the extinction coefficient of ZnS, providing a comprehensive insight into their effects. Our findings show a good agreement with existing experimental and theoretical data, offering a deep understanding of the optoelectronic properties of doped ZnS semiconductors. This investigation underlines the significance of doping in tailoring the properties of ZnS for enhanced optoelectronic applications, laying the groundwork for further experimental validation and theoretical analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂过渡金属调节 ZnS 的光电特性:密度泛函理论的启示
通过应用基于密度泛函理论(DFT)的第一性原理计算,系统地研究了掺杂过渡金属(铜、镉、银和金)的 ZnS 的光电特性。我们探讨了铜(5%、10%、20%)、镉(5%、10%、15%、20%)、银(5%、15%)和金(5%、15%、20%)的各种掺杂浓度,以研究它们对 ZnS 性质的影响。我们的分析证实,所有掺杂结构都表现出直接带隙半导体行为。值得注意的是,带隙能随着镉、银和金的加入而降低,而铜含量的增加会导致带隙变宽。这项研究还评估了这些过渡金属如何影响 ZnS 的吸收系数、介电常数、折射率和消光系数,从而全面了解了它们的影响。我们的研究结果与现有的实验和理论数据十分吻合,为深入了解掺杂 ZnS 半导体的光电特性提供了依据。这项研究强调了掺杂在调整 ZnS 性能以增强光电应用方面的重要意义,为进一步的实验验证和理论分析奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
期刊最新文献
Retraction Note: Advancements in optical steganography for secure medical data transmission in telehealth systems Retraction Note: A new design for 4-bit RCA using quantum cellular automata technology Retraction Note: Orthogonal frequency multiplexing division based modulation recognition using deep belief network with tangent search optimization in wireless optic communication Compact penta-band metamaterial absorber: achieving polarization insensitivity and optimized bandwidth performance Quantum chemical tailoring of intrinsic donor–acceptor configurations as efficient nonlinear optical materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1