Enhanced prediction of preoperative mesenteric lymph node metastasis in colorectal cancer using machine learning with CT-based data

Lanni Zhou, Lizhu Ouyang, Baoliang Guo, Xiyi Huang, Shaomin Yang, Jialing Pan, Liwen Wang, Ming Chen, Fan Xie, Yunjing Li, Yongxing Du, Xinjie Chen, Qiugen Hu, Fusheng Ouyang
{"title":"Enhanced prediction of preoperative mesenteric lymph node metastasis in colorectal cancer using machine learning with CT-based data","authors":"Lanni Zhou,&nbsp;Lizhu Ouyang,&nbsp;Baoliang Guo,&nbsp;Xiyi Huang,&nbsp;Shaomin Yang,&nbsp;Jialing Pan,&nbsp;Liwen Wang,&nbsp;Ming Chen,&nbsp;Fan Xie,&nbsp;Yunjing Li,&nbsp;Yongxing Du,&nbsp;Xinjie Chen,&nbsp;Qiugen Hu,&nbsp;Fusheng Ouyang","doi":"10.1002/mef2.100","DOIUrl":null,"url":null,"abstract":"<p>The detection of lymph node (LN) involvement is fundamental for staging colorectal cancer (CRC) and aids in clinical decision-making. Traditionally, determining LN status predominantly relies heavily on histological examination of LN specimens, which can occasionally lead to overtreatment. This study aims to develop a clinical prediction model using machine learning algorithms to assess the risk of mesenteric LN metastasis preoperatively, based on computed tomography images and clinicopathological data from CRC patients. Our findings demonstrate that the predictive model based on XGBoost algorithms exhibited the optimal performance, with area under the curve values consistently stable across training (0.836, 95% confidence interval [CI]: 0.750–0.902) and validation (0.831, 95% CI: 0.688–0.927) cohorts. The model was further elucidated using SHapley Additive Explanation values, which ranked predictors in the XGBoost model by their importance, providing insights into the model's decision-making process. Additionally, the force plot visualizes the contribution of each variable to the prediction for individual samples. The as-obtained model may have the potential to aid in clinical treatment planning, optimize the selection of surgical methods, and guide the decision-making process for adjuvant therapy before surgery.</p>","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.100","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm - Future medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mef2.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of lymph node (LN) involvement is fundamental for staging colorectal cancer (CRC) and aids in clinical decision-making. Traditionally, determining LN status predominantly relies heavily on histological examination of LN specimens, which can occasionally lead to overtreatment. This study aims to develop a clinical prediction model using machine learning algorithms to assess the risk of mesenteric LN metastasis preoperatively, based on computed tomography images and clinicopathological data from CRC patients. Our findings demonstrate that the predictive model based on XGBoost algorithms exhibited the optimal performance, with area under the curve values consistently stable across training (0.836, 95% confidence interval [CI]: 0.750–0.902) and validation (0.831, 95% CI: 0.688–0.927) cohorts. The model was further elucidated using SHapley Additive Explanation values, which ranked predictors in the XGBoost model by their importance, providing insights into the model's decision-making process. Additionally, the force plot visualizes the contribution of each variable to the prediction for individual samples. The as-obtained model may have the potential to aid in clinical treatment planning, optimize the selection of surgical methods, and guide the decision-making process for adjuvant therapy before surgery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于 CT 数据的机器学习增强结直肠癌术前肠系膜淋巴结转移的预测能力
淋巴结(LN)受累的检测是结直肠癌(CRC)分期的基础,有助于临床决策。传统上,确定淋巴结状态主要依靠对淋巴结标本进行组织学检查,这偶尔会导致过度治疗。本研究旨在根据计算机断层扫描图像和 CRC 患者的临床病理数据,利用机器学习算法开发一种临床预测模型,用于术前评估肠系膜 LN 转移的风险。我们的研究结果表明,基于 XGBoost 算法的预测模型表现出最佳性能,其曲线下面积值在训练队列(0.836,95% 置信区间 [CI]:0.750-0.902)和验证队列(0.831,95% 置信区间:0.688-0.927)中一直保持稳定。使用 SHapley Additive Explanation 值对模型进行了进一步阐释,该值对 XGBoost 模型中的预测因子按其重要性进行了排序,从而提供了对模型决策过程的深入了解。此外,力图直观地显示了每个变量对单个样本预测的贡献。所获得的模型可能有助于临床治疗规划、优化手术方法的选择以及指导手术前辅助治疗的决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Vancomycin-intermediate Staphylococcus aureus employs CcpA-GlmS metabolism regulatory cascade to resist vancomycin Cysteinyl-tRNA synthetase is involved in damage of renal tubular cells in ischemia–reperfusion-induced acute kidney injury via pyroptosis A single-cell transcriptomic atlas of severe intrauterine adhesion Long COVID across SARS-CoV-2 variants: Clinical features, pathogenesis, and future directions Role of next-generation sequencing in revolutionizing healthcare for cancer management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1