Genetic Modification of Mice Using Prime Editing

Amr R. Salem, Xiaoling Xie, Susan H. Griffin, Lin Gan, Joseph M Miano
{"title":"Genetic Modification of Mice Using Prime Editing","authors":"Amr R. Salem,&nbsp;Xiaoling Xie,&nbsp;Susan H. Griffin,&nbsp;Lin Gan,&nbsp;Joseph M Miano","doi":"10.1002/cpz1.70034","DOIUrl":null,"url":null,"abstract":"<p>Genetically modifying mice traditionally involved complex methods of designing and validating targeting constructs, embryonic stem cell electroporation and selection, blastocyst injection, and breeding chimeras for germline transmission. Such arduous steps were best carried out by specialized gene targeting cores in academia or through expensive commercial vendors. Further, the time from initiation to completion of a project often took at least 1 year and, in some cases, much longer (or never), with no guarantees of success. The RNA-programmable CRISPR system of gene editing has greatly streamlined the generation of gene modifications (e.g., small substitutions, insertions, and deletions) in the mouse with high rates of success. Several editing platforms exist for gene/genome targeting in mice and other animal models previously difficult or impossible to alter. Here, we provide a simplified method of generating genetically modified mice using the prime editing platform. © 2024 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Design, cloning, and synthesis of engineered pegRNA (epegRNA)</p><p><b>Basic Protocol 2</b>: Microinjection of PE2 components into mouse zygote</p><p><b>Basic Protocol 3</b>: Genotyping founder mice and breeding for germline transmission</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"4 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genetically modifying mice traditionally involved complex methods of designing and validating targeting constructs, embryonic stem cell electroporation and selection, blastocyst injection, and breeding chimeras for germline transmission. Such arduous steps were best carried out by specialized gene targeting cores in academia or through expensive commercial vendors. Further, the time from initiation to completion of a project often took at least 1 year and, in some cases, much longer (or never), with no guarantees of success. The RNA-programmable CRISPR system of gene editing has greatly streamlined the generation of gene modifications (e.g., small substitutions, insertions, and deletions) in the mouse with high rates of success. Several editing platforms exist for gene/genome targeting in mice and other animal models previously difficult or impossible to alter. Here, we provide a simplified method of generating genetically modified mice using the prime editing platform. © 2024 Wiley Periodicals LLC.

Basic Protocol 1: Design, cloning, and synthesis of engineered pegRNA (epegRNA)

Basic Protocol 2: Microinjection of PE2 components into mouse zygote

Basic Protocol 3: Genotyping founder mice and breeding for germline transmission

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基因编辑技术修改小鼠基因
对小鼠进行基因改造,传统上涉及设计和验证靶向构建体、胚胎干细胞电穿孔和选择、囊胚注射以及培育种系传递嵌合体等复杂方法。这些艰巨的步骤最好由学术界专门的基因打靶中心或昂贵的商业供应商来完成。此外,一个项目从启动到完成往往需要至少一年的时间,在某些情况下甚至需要更长的时间(或永远无法完成),而且无法保证成功。RNA 可编程 CRISPR 基因编辑系统大大简化了小鼠基因修饰(如小的替换、插入和缺失)的生成过程,而且成功率很高。目前有几种编辑平台可用于小鼠和其他动物模型的基因/基因组靶向,而在以前很难或根本不可能改变这些基因/基因组。在此,我们提供了一种使用 prime 编辑平台生成转基因小鼠的简化方法。© 2024 Wiley Periodicals LLC.基本方案 1:设计、克隆和合成工程化 pegRNA (epegRNA)基本方案 2:将 PE2 成分显微注射到小鼠子代基本方案 3:基因分型创始小鼠和种系传播育种
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
DMS-MapSeq Analysis of Antisense Oligonucleotide Binding to lncRNA PANDA Multi-site Ultrasound-guided Fine Needle Aspiration to Study Cells and Soluble Factors From Human Lymph Nodes Analysis of Free Oligosaccharides in Urine by High-Performance Liquid Chromatography–Tandem Mass Spectrometry Synthesis and Application of a Caged Bioluminescent Probe for the Immunoproteasome Engineering and Evaluating Vascularized Organotypic Spheroids On-Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1