Andre Ampuero, Katarzyna Vončina, Dilworth Y. Parkinson, Julia D. Sigwart
{"title":"Aesthete Pattern Diversity in Chiton Clades (Mollusca: Polyplacophora): Balancing Sensory Structures and Strength in Valve Architecture","authors":"Andre Ampuero, Katarzyna Vončina, Dilworth Y. Parkinson, Julia D. Sigwart","doi":"10.1002/jmor.21784","DOIUrl":null,"url":null,"abstract":"<p>Chitons possess the most elaborate system of shell pores found in any hard-shelled invertebrate. Although chitons possess some anteriorly located sense organs, they lack true cephalization, as their major sensory systems are not concentrated in a distinct head region. Instead, the aesthete system within their shells forms a dense sensory network that overcomes the barrier of their hard dorsal armour. The basic arrangement of neural structures embedded within a solid, opaque matrix, has confounded understanding of the overall network. In this study, we use synchrotron X-ray μCT to visualise the aesthete canal networks inside chiton valves. We selected representatives from all three major chiton clades: Lepidopleurida, the basal branching clade, and Callochitonida and Chitonida, which both have more complex shell morphology, to compare internal structure. Lepidopleurida aesthete canals are oriented vertically and pass directly through the shell to connect with the body. By contrast, aesthetes canals in Callochitonida and Chitonida have complex internal structures with extended horizontal passages, coalescing at the shell diagonal that corresponds to the valve insertion slits. This represents a stepwise evolution of chiton shell form, where thicker and more complex valves require a diverting and rewiring of the entire sensory network. Aspects of the aesthete system, such as the microscopic arrangement of surface pores, have long been used in chiton taxonomy for species diagnoses; insertion slits should also be understood as a secondary feature of the aesthete system. Chiton shell structures that are used for morphological systematics are driven by sensory adaptations.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmor.21784","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Morphology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmor.21784","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chitons possess the most elaborate system of shell pores found in any hard-shelled invertebrate. Although chitons possess some anteriorly located sense organs, they lack true cephalization, as their major sensory systems are not concentrated in a distinct head region. Instead, the aesthete system within their shells forms a dense sensory network that overcomes the barrier of their hard dorsal armour. The basic arrangement of neural structures embedded within a solid, opaque matrix, has confounded understanding of the overall network. In this study, we use synchrotron X-ray μCT to visualise the aesthete canal networks inside chiton valves. We selected representatives from all three major chiton clades: Lepidopleurida, the basal branching clade, and Callochitonida and Chitonida, which both have more complex shell morphology, to compare internal structure. Lepidopleurida aesthete canals are oriented vertically and pass directly through the shell to connect with the body. By contrast, aesthetes canals in Callochitonida and Chitonida have complex internal structures with extended horizontal passages, coalescing at the shell diagonal that corresponds to the valve insertion slits. This represents a stepwise evolution of chiton shell form, where thicker and more complex valves require a diverting and rewiring of the entire sensory network. Aspects of the aesthete system, such as the microscopic arrangement of surface pores, have long been used in chiton taxonomy for species diagnoses; insertion slits should also be understood as a secondary feature of the aesthete system. Chiton shell structures that are used for morphological systematics are driven by sensory adaptations.
期刊介绍:
The Journal of Morphology welcomes articles of original research in cytology, protozoology, embryology, and general morphology. Articles generally should not exceed 35 printed pages. Preliminary notices or articles of a purely descriptive morphological or taxonomic nature are not included. No paper which has already been published will be accepted, nor will simultaneous publications elsewhere be allowed.
The Journal of Morphology publishes research in functional, comparative, evolutionary and developmental morphology from vertebrates and invertebrates. Human and veterinary anatomy or paleontology are considered when an explicit connection to neontological animal morphology is presented, and the paper contains relevant information for the community of animal morphologists. Based on our long tradition, we continue to seek publishing the best papers in animal morphology.