Jonathan M. G. Viducich, Sevval S. Gulduren, Joe M. Ellingson, John S. Selker
{"title":"Geomorphological and Sedimentological Rationale for Staged Sand Dam Construction","authors":"Jonathan M. G. Viducich, Sevval S. Gulduren, Joe M. Ellingson, John S. Selker","doi":"10.1002/hyp.15307","DOIUrl":null,"url":null,"abstract":"<p>Stream sediment transport results from a convolution of climate, weather, geology, topography, biology, and human influence. In addition to providing water and food security for rural dryland communities, sand dams—small weirs designed to trap only the coarse fractions of transported sediments in seasonal and ephemeral streams—highlight many complexities of geomorphological dynamics. Sand dams store water in interstitial riverbed pores and the size of deposited sediment particles largely determines the recoverability of stored water: Fine materials limit transmission and provide lower volumetric yield. In this study, we seek to identify a practical method for evaluating the theoretical effect of staged sand dam crest construction on key sediment-trapping processes for a proposed dam site. We argue that the Rouse number provides a useful criterion for identifying regimes where the target material grades are trapped. These ideas were tested using sediment data collected in Kenya and US Army Corps of Engineers River Analysis System numerical simulations to evaluate the sensitivity of sedimentation processes to crest height. We show that constructing sand dams in stages results in more targeted trapping of coarse material. Sedimentation is shown to be more sensitive to variation in crest height than the flood hydrograph, especially when a dam's crest height is small. By introducing a method to assess the necessity and inform design of staged crest construction based on local flow dynamics, this study offers a framework for optimising sand dam performance in data-scarce environments. This approach provides a means to balance construction costs with expected benefits, enhancing the sustainability and functionality of sand dams in arid and semi-arid regions.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15307","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15307","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Stream sediment transport results from a convolution of climate, weather, geology, topography, biology, and human influence. In addition to providing water and food security for rural dryland communities, sand dams—small weirs designed to trap only the coarse fractions of transported sediments in seasonal and ephemeral streams—highlight many complexities of geomorphological dynamics. Sand dams store water in interstitial riverbed pores and the size of deposited sediment particles largely determines the recoverability of stored water: Fine materials limit transmission and provide lower volumetric yield. In this study, we seek to identify a practical method for evaluating the theoretical effect of staged sand dam crest construction on key sediment-trapping processes for a proposed dam site. We argue that the Rouse number provides a useful criterion for identifying regimes where the target material grades are trapped. These ideas were tested using sediment data collected in Kenya and US Army Corps of Engineers River Analysis System numerical simulations to evaluate the sensitivity of sedimentation processes to crest height. We show that constructing sand dams in stages results in more targeted trapping of coarse material. Sedimentation is shown to be more sensitive to variation in crest height than the flood hydrograph, especially when a dam's crest height is small. By introducing a method to assess the necessity and inform design of staged crest construction based on local flow dynamics, this study offers a framework for optimising sand dam performance in data-scarce environments. This approach provides a means to balance construction costs with expected benefits, enhancing the sustainability and functionality of sand dams in arid and semi-arid regions.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.