{"title":"Simultaneous accelerated stress testing of membrane electrode assembly components in polymer electrolyte fuel cells","authors":"Wataru Yoshimune, Akihiko Kato, Tetsuichiro Hayakawa, Satoshi Yamaguchi, Satoru Kato","doi":"10.1038/s41529-024-00524-z","DOIUrl":null,"url":null,"abstract":"The durability of polymer electrolyte fuel cells (PEFCs) in fuel cell electric vehicles is important for the shift from passenger cars to heavy-duty vehicles. The components of a PEFC, namely the proton exchange membrane (PEM), catalyst layer (CL), and gas diffusion layer (GDL), contribute to the degradation of the fuel cell performance. In this paper, we propose a method for simultaneously evaluating the degradation rates of these components by combining electrochemical characterization with operando synchrotron X-ray radiography. The open-circuit voltage, electrochemically active surface area (ECSA), and water saturation were used as the degradation indicators for the PEMs, CLs, and GDLs, respectively. The results of two accelerated stress tests (loading and start-stop cycles) after 10,000 cycles showed that the increase in water saturation owing to the loss of hydrophobicity due to carbon corrosion in the cathode GDL occurred on the same timescale as the degradation in the PEM and cathode CL. Specifically, during the load cycle AST, the cathode CL degraded with a 26% reduction in the ECSA along with the cathode GDL degradation with a 10% increase in water saturation. This suggests that more efforts should be devoted to studies on the durability of GDLs for heavy-duty applications.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-9"},"PeriodicalIF":6.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00524-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00524-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The durability of polymer electrolyte fuel cells (PEFCs) in fuel cell electric vehicles is important for the shift from passenger cars to heavy-duty vehicles. The components of a PEFC, namely the proton exchange membrane (PEM), catalyst layer (CL), and gas diffusion layer (GDL), contribute to the degradation of the fuel cell performance. In this paper, we propose a method for simultaneously evaluating the degradation rates of these components by combining electrochemical characterization with operando synchrotron X-ray radiography. The open-circuit voltage, electrochemically active surface area (ECSA), and water saturation were used as the degradation indicators for the PEMs, CLs, and GDLs, respectively. The results of two accelerated stress tests (loading and start-stop cycles) after 10,000 cycles showed that the increase in water saturation owing to the loss of hydrophobicity due to carbon corrosion in the cathode GDL occurred on the same timescale as the degradation in the PEM and cathode CL. Specifically, during the load cycle AST, the cathode CL degraded with a 26% reduction in the ECSA along with the cathode GDL degradation with a 10% increase in water saturation. This suggests that more efforts should be devoted to studies on the durability of GDLs for heavy-duty applications.
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies