首页 > 最新文献

npj Materials Degradation最新文献

英文 中文
Systematic quantification of hydrogen in pipeline steel by atom probe tomography after ambient charging and transfer 通过原子探针层析成像技术对管道钢中的氢进行系统定量分析
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-18 DOI: 10.1038/s41529-024-00528-9
Shuohan Wang, Peng Zhang, Majid Laleh, Lu Jiang, Mike Yongjun Tan, Ross K. W. Marceau
Atom probe tomography (APT) is a promising tool to measure the atomic-scale distribution of hydrogen in solid matter for the assessment of hydrogen embrittlement susceptibility of materials. However, the accuracy of such measurements resulting from ambient charging and transfer experiments needs to be established. In this work, APT quantification of hydrogen (H) and deuterium (D) in a typical X65 pipeline steel has been determined after ambient charging and transfer to ascertain the contribution of artifacts to the measured H/D signal. A series of experimental workflows related to sample preparation (electropolishing, focussed ion beam) and electrochemical charging conditions (different electrolytes and charging potentials) were explored for H/D measurement using APT. The results show that APT can be used to measure charged H/D with statistical confidence after ambient charging and transfer, that hydrogen ingress occurs during electropolishing, and using a more negative charging potential will introduce more H/D into the material.
原子探针层析成像(APT)是测量固体物质中氢的原子尺度分布以评估材料氢脆敏感性的一种很有前途的工具。然而,这种由环境充填和转移实验得出的测量结果的准确性还有待确定。在这项工作中,我们测定了典型 X65 管线钢中氢 (H) 和氘 (D) 在环境充填和转移后的 APT 定量,以确定伪影对 H/D 信号测量的影响。在使用 APT 测量 H/D 时,探索了一系列与样品制备(电抛光、聚焦离子束)和电化学充电条件(不同的电解质和充电电位)相关的实验工作流程。结果表明,在环境充电和转移之后,APT 可用于测量带电的 H/D,并具有统计置信度;在电抛光过程中会发生氢气渗入;使用更负的充电电位会将更多的 H/D 引入材料中。
{"title":"Systematic quantification of hydrogen in pipeline steel by atom probe tomography after ambient charging and transfer","authors":"Shuohan Wang, Peng Zhang, Majid Laleh, Lu Jiang, Mike Yongjun Tan, Ross K. W. Marceau","doi":"10.1038/s41529-024-00528-9","DOIUrl":"10.1038/s41529-024-00528-9","url":null,"abstract":"Atom probe tomography (APT) is a promising tool to measure the atomic-scale distribution of hydrogen in solid matter for the assessment of hydrogen embrittlement susceptibility of materials. However, the accuracy of such measurements resulting from ambient charging and transfer experiments needs to be established. In this work, APT quantification of hydrogen (H) and deuterium (D) in a typical X65 pipeline steel has been determined after ambient charging and transfer to ascertain the contribution of artifacts to the measured H/D signal. A series of experimental workflows related to sample preparation (electropolishing, focussed ion beam) and electrochemical charging conditions (different electrolytes and charging potentials) were explored for H/D measurement using APT. The results show that APT can be used to measure charged H/D with statistical confidence after ambient charging and transfer, that hydrogen ingress occurs during electropolishing, and using a more negative charging potential will introduce more H/D into the material.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-13"},"PeriodicalIF":6.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00528-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrosion evaluation of Al-Cu-Mn-Zr cast alloys in 3.5% NaCl solution 3.5% NaCl 溶液中 Al-Cu-Mn-Zr 铸造合金的腐蚀评估
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-09 DOI: 10.1038/s41529-024-00519-w
Jiheon Jun, Amit Shyam, Sumit Bahl, Yi-Feng Su, J. Allen Haynes
Corrosion behavior of cast Al-Cu-Mn-Zr (ACMZ) and RR350 alloys was compared to a cast 319 alloy in 3.5 wt.% NaCl. After 168 h immersion, ACMZ and RR350 alloys suffered from preferential attack adjacent to intermetallic particles decorated at grain boundaries while the attack in 319 occurred in eutectic Al-Si dendritic boundaries. Electrochemical data allowed semiquantitative comparison of alloy resistance to corrosion initiation, and ACMZ type alloys, including RR350 and three alloys with higher Cu, were considered more resistant than 319 due to the absence of deleterious Si particles. In case of 319, such Si particles presumably drove higher micro-galvanic influence to initiate and sustain Al corrosion. With lower susceptibility to corrosion initiation, ACMZ alloys should exhibit higher or at minimum similar resistance compared to cast 319.
将铸造的 Al-Cu-Mn-Zr (ACMZ) 和 RR350 合金与铸造的 319 合金在 3.5 wt.% 氯化钠中的腐蚀行为进行了比较。浸泡 168 小时后,ACMZ 和 RR350 合金在晶界金属间微粒附近受到优先侵蚀,而 319 合金的侵蚀发生在共晶铝-硅树枝状晶界。电化学数据可对合金的抗腐蚀能力进行半定量比较,ACMZ 型合金(包括 RR350 和三种铜含量较高的合金)由于不含有害的硅颗粒,因此被认为比 319 的抗腐蚀能力更强。就 319 而言,这些硅颗粒可能会产生更高的微电蚀作用,从而引发和维持铝腐蚀。与铸件 319 相比,ACMZ 合金的腐蚀起始敏感性较低,因此应表现出更高或最低类似的耐腐蚀性。
{"title":"Corrosion evaluation of Al-Cu-Mn-Zr cast alloys in 3.5% NaCl solution","authors":"Jiheon Jun, Amit Shyam, Sumit Bahl, Yi-Feng Su, J. Allen Haynes","doi":"10.1038/s41529-024-00519-w","DOIUrl":"10.1038/s41529-024-00519-w","url":null,"abstract":"Corrosion behavior of cast Al-Cu-Mn-Zr (ACMZ) and RR350 alloys was compared to a cast 319 alloy in 3.5 wt.% NaCl. After 168 h immersion, ACMZ and RR350 alloys suffered from preferential attack adjacent to intermetallic particles decorated at grain boundaries while the attack in 319 occurred in eutectic Al-Si dendritic boundaries. Electrochemical data allowed semiquantitative comparison of alloy resistance to corrosion initiation, and ACMZ type alloys, including RR350 and three alloys with higher Cu, were considered more resistant than 319 due to the absence of deleterious Si particles. In case of 319, such Si particles presumably drove higher micro-galvanic influence to initiate and sustain Al corrosion. With lower susceptibility to corrosion initiation, ACMZ alloys should exhibit higher or at minimum similar resistance compared to cast 319.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-16"},"PeriodicalIF":6.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00519-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fracture analysis under modes I and II of adhesive joints on CFRP in saline environment 盐水环境中 CFRP 粘接接头在模式 I 和 II 下的断裂分析
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-07 DOI: 10.1038/s41529-024-00535-w
P. Vigón, A. Argüelles, M. Lozano, J. Viña
This study analyzes the delamination behavior of adhesive joints after exposure to a saline environment for zero, one, and twelve weeks. Delamination was assessed under static and fatigue loading conditions in fracture Modes I and II, with a detailed analysis of fracture surfaces using Scanning Electron Microscopy (SEM) and Backscattered Electron (BSE) detection. The 3D images reveal significant morphological differences in fracture surfaces, showing variations in fatigue lines and the presence of impurities depending on the fracture mode. A probabilistic fatigue life analysis was performed using a Weibull regression model, showing notable changes, especially in Mode I at a high number of cycles. A chemical analysis using EDX and FTIR-ATR complemented the mechanical study, revealing an increase in sodium and chlorine concentrations with prolonged saline exposure. Oxidative degradation was also observed, with carbonyl groups increasing significantly over time, particularly in areas most exposed to the saline mist.
本研究分析了粘合剂接头在盐水环境中暴露零周、一周和十二周后的分层行为。在断裂模式 I 和 II 的静态和疲劳加载条件下对分层进行了评估,并使用扫描电子显微镜 (SEM) 和背散射电子 (BSE) 检测对断裂表面进行了详细分析。三维图像显示断裂表面存在明显的形态差异,根据断裂模式的不同,疲劳线和杂质的存在也有所不同。使用 Weibull 回归模型进行了概率疲劳寿命分析,结果显示了明显的变化,尤其是在高循环次数的模式 I 中。使用 EDX 和 FTIR-ATR 进行的化学分析是对机械研究的补充,结果表明随着盐水暴露时间的延长,钠和氯的浓度也在增加。此外,还观察到氧化降解现象,羰基随着时间的推移显著增加,尤其是在盐雾暴露最严重的区域。
{"title":"Fracture analysis under modes I and II of adhesive joints on CFRP in saline environment","authors":"P. Vigón, A. Argüelles, M. Lozano, J. Viña","doi":"10.1038/s41529-024-00535-w","DOIUrl":"10.1038/s41529-024-00535-w","url":null,"abstract":"This study analyzes the delamination behavior of adhesive joints after exposure to a saline environment for zero, one, and twelve weeks. Delamination was assessed under static and fatigue loading conditions in fracture Modes I and II, with a detailed analysis of fracture surfaces using Scanning Electron Microscopy (SEM) and Backscattered Electron (BSE) detection. The 3D images reveal significant morphological differences in fracture surfaces, showing variations in fatigue lines and the presence of impurities depending on the fracture mode. A probabilistic fatigue life analysis was performed using a Weibull regression model, showing notable changes, especially in Mode I at a high number of cycles. A chemical analysis using EDX and FTIR-ATR complemented the mechanical study, revealing an increase in sodium and chlorine concentrations with prolonged saline exposure. Oxidative degradation was also observed, with carbonyl groups increasing significantly over time, particularly in areas most exposed to the saline mist.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-17"},"PeriodicalIF":6.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00535-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscale chemical imaging to characterize and quantify corrosion processes at the metal-electrolyte interface 利用微尺度化学成像技术表征和量化金属-电解质界面的腐蚀过程。
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1038/s41529-024-00534-x
Cristhiana C. Albert, Shishir Mundra, Dario Ferreira Sanchez, Fabio E. Furcas, Ashish D. Rajyaguru, O. Burkan Isgor, Daniel Grolimund, Ueli M. Angst
We introduce an experimental setup to chemically image corrosion processes at metal-electrolyte interfaces under stagnant, confined conditions—relevant in a wide range of situations. The setup is based on a glass capillary, in which precipitation of corrosion products in the interfacial aqueous phase can be monitored over time with optical microscopy, and chemically and structurally characterized with microscopic synchrotron-based techniques (X-ray fluorescence, X-ray diffraction, and X-ray absorption spectroscopy). Moreover, quantification of precipitates through X-ray transmission measurements provides in-situ corrosion rates. We illustrate this setup for iron corrosion in a pH 8 electrolyte, revealing the critical role of O2 and iron diffusion in governing the precipitation of ferrihydrite and its transformation to goethite. Corrosion and coupled reactive transport processes can thus be monitored and fundamentally investigated at the metal-electrolyte interface, with micrometer-scale resolution. This capillary setup has potential applications for in-situ corrosion studies of various metals and environments.
我们介绍了一种实验装置,用于在停滞、密闭条件下对金属电解质界面的腐蚀过程进行化学成像,适用于多种情况。该装置以玻璃毛细管为基础,其中界面水相中腐蚀产物的沉淀可通过光学显微镜进行长期监测,并通过微观同步加速器技术(X 射线荧光、X 射线衍射和 X 射线吸收光谱)进行化学和结构表征。此外,通过 X 射线透射测量对沉淀物进行定量,可提供原位腐蚀率。我们以 pH 值为 8 的电解质中的铁腐蚀为例,说明了氧气和铁的扩散在控制铁水物的沉淀及其转化为高铁的过程中所起的关键作用。因此,可以在金属-电解质界面上以微米级的分辨率对腐蚀和耦合反应传输过程进行监测和基本研究。这种毛细管装置可用于各种金属和环境的原位腐蚀研究。
{"title":"Microscale chemical imaging to characterize and quantify corrosion processes at the metal-electrolyte interface","authors":"Cristhiana C. Albert, Shishir Mundra, Dario Ferreira Sanchez, Fabio E. Furcas, Ashish D. Rajyaguru, O. Burkan Isgor, Daniel Grolimund, Ueli M. Angst","doi":"10.1038/s41529-024-00534-x","DOIUrl":"10.1038/s41529-024-00534-x","url":null,"abstract":"We introduce an experimental setup to chemically image corrosion processes at metal-electrolyte interfaces under stagnant, confined conditions—relevant in a wide range of situations. The setup is based on a glass capillary, in which precipitation of corrosion products in the interfacial aqueous phase can be monitored over time with optical microscopy, and chemically and structurally characterized with microscopic synchrotron-based techniques (X-ray fluorescence, X-ray diffraction, and X-ray absorption spectroscopy). Moreover, quantification of precipitates through X-ray transmission measurements provides in-situ corrosion rates. We illustrate this setup for iron corrosion in a pH 8 electrolyte, revealing the critical role of O2 and iron diffusion in governing the precipitation of ferrihydrite and its transformation to goethite. Corrosion and coupled reactive transport processes can thus be monitored and fundamentally investigated at the metal-electrolyte interface, with micrometer-scale resolution. This capillary setup has potential applications for in-situ corrosion studies of various metals and environments.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-9"},"PeriodicalIF":6.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540903/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure engineering for corrosion resistance in structural alloy design 结构合金设计中的抗腐蚀微结构工程
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-04 DOI: 10.1038/s41529-024-00533-y
Karthikeyan Hariharan, Sannakaisa Virtanen
During structural alloy development, the initial microstructure design is mainly considered in the context of achieving a balance of mechanical properties, with corrosion resistance often considered much later in the process. This perspective uses illustrations from degradation mechanisms in 3D-printed alloys and in-service microstructure evolution-driven mechanisms to show the importance of microstructure design for corrosion resistance and mechanical properties simultaneously, to improve the reliability of critical infrastructure.
在结构合金开发过程中,最初的微观结构设计主要是在实现机械性能平衡的背景下考虑的,而耐腐蚀性往往是在开发过程的后期才考虑的。本视角从三维打印合金的降解机制和在役微结构演化驱动机制两方面进行说明,以显示微结构设计同时兼顾耐腐蚀性和机械性能的重要性,从而提高关键基础设施的可靠性。
{"title":"Microstructure engineering for corrosion resistance in structural alloy design","authors":"Karthikeyan Hariharan, Sannakaisa Virtanen","doi":"10.1038/s41529-024-00533-y","DOIUrl":"10.1038/s41529-024-00533-y","url":null,"abstract":"During structural alloy development, the initial microstructure design is mainly considered in the context of achieving a balance of mechanical properties, with corrosion resistance often considered much later in the process. This perspective uses illustrations from degradation mechanisms in 3D-printed alloys and in-service microstructure evolution-driven mechanisms to show the importance of microstructure design for corrosion resistance and mechanical properties simultaneously, to improve the reliability of critical infrastructure.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-6"},"PeriodicalIF":6.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00533-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the degradation mechanism of Fe-40Ni-15Co superalloy exposed to marine atmospheric and high-temperature conditions 对暴露于海洋大气和高温条件下的 Fe-40Ni-15Co 超合金降解机制的深入研究
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-02 DOI: 10.1038/s41529-024-00531-0
Quanxiang Sun, Hongfei Yu, Yao Wang, Bo Zhang, Xiaole Han, Xingqi Wang, Dechuang Zhang, Jianguo Lin, Yange Yang, Fuhui Wang
This study investigated the corrosion and oxidation mechanism of the Cr-free Fe-40Ni-15Co superalloy with exposure to a tropical marine atmosphere for one year and a subsequent high temperature of 650 °C for 300 h. The degradation behavior of the samples was evaluated based on surface characterization and analysis. In the tropical marine atmospheres, the corrosion process of the Fe-40Ni-15Co superalloy presented an initial localized type after one month of exposure and gradually developed into uniform. The corrosion products were mainly comprised of Fe2O3 and NiO, suppressing the pitting process. During the high-temperature oxidation process, all samples presented super-parabolic oxidation kinetics. Except for the initial active oxidation due to salt deposits, the corrosion products after atmospheric exposure could significantly enhance the oxidation resistance at 650 °C. An explanation for the degradation mechanism of the Fe-40Ni-15Co superalloy was developed based on the synergistic effects of atmospheric corrosion and high-temperature oxidation.
本研究调查了无铬铁-40Ni-15Co 超级合金在热带海洋大气中暴露一年并在 650 °C 高温下暴露 300 小时后的腐蚀和氧化机理。在热带海洋大气中,Fe-40Ni-15Co 超耐热合金的腐蚀过程在暴露一个月后呈现出最初的局部腐蚀类型,并逐渐发展为均匀腐蚀。腐蚀产物主要由 Fe2O3 和 NiO 组成,抑制了点蚀过程。在高温氧化过程中,所有样品都呈现出超抛物线氧化动力学。除了盐沉积导致的初始活性氧化外,大气暴露后的腐蚀产物可显著增强 650 ℃ 下的抗氧化性。基于大气腐蚀和高温氧化的协同作用,对 Fe-40Ni-15Co 超合金的降解机理做出了解释。
{"title":"Insights into the degradation mechanism of Fe-40Ni-15Co superalloy exposed to marine atmospheric and high-temperature conditions","authors":"Quanxiang Sun, Hongfei Yu, Yao Wang, Bo Zhang, Xiaole Han, Xingqi Wang, Dechuang Zhang, Jianguo Lin, Yange Yang, Fuhui Wang","doi":"10.1038/s41529-024-00531-0","DOIUrl":"10.1038/s41529-024-00531-0","url":null,"abstract":"This study investigated the corrosion and oxidation mechanism of the Cr-free Fe-40Ni-15Co superalloy with exposure to a tropical marine atmosphere for one year and a subsequent high temperature of 650 °C for 300 h. The degradation behavior of the samples was evaluated based on surface characterization and analysis. In the tropical marine atmospheres, the corrosion process of the Fe-40Ni-15Co superalloy presented an initial localized type after one month of exposure and gradually developed into uniform. The corrosion products were mainly comprised of Fe2O3 and NiO, suppressing the pitting process. During the high-temperature oxidation process, all samples presented super-parabolic oxidation kinetics. Except for the initial active oxidation due to salt deposits, the corrosion products after atmospheric exposure could significantly enhance the oxidation resistance at 650 °C. An explanation for the degradation mechanism of the Fe-40Ni-15Co superalloy was developed based on the synergistic effects of atmospheric corrosion and high-temperature oxidation.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00531-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lifetime prediction of epoxy coating using convolutional neural networks and post processing image recognition methods 利用卷积神经网络和后处理图像识别方法预测环氧树脂涂层的寿命
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-02 DOI: 10.1038/s41529-024-00532-z
Fandi Meng, Yufan Chen, Jianning Chi, Huan Wang, Fuhui Wang, Li Liu
The rapid failure of organic coatings in deep-sea environments complicates accurate lifetime prediction. Given the rapid cracking characteristic on the coating surface in this environment, a comprehensive “performance-structure” failure model was established. Initially, a targeted image recognition approach containing convolutional neural network (CNN) and post-processing was constructed for the crack area detection. An overall precision of 82.81% demonstrated the network’s good accuracy. The length distribution and the statistical evolution of cracks were extracted from SEM images to obtain the kinetic equation of the cracks related to coating structure degradation. In addition, the kinetics of water diffusion and coating adhesion were examined, as they represent critical parameters of coating performance. Based on this achievement, a failure model incorporating three dominant factors was integrated by the gray relational analysis method. The average prediction error of the model was 2.60%, which lays the groundwork for developing image-based methods to predict coating life.
有机涂层在深海环境中的快速失效使得准确预测使用寿命变得复杂。鉴于涂层表面在这种环境下的快速开裂特征,建立了一个全面的 "性能-结构 "失效模型。首先,构建了一种包含卷积神经网络(CNN)和后处理的目标图像识别方法,用于裂纹区域检测。82.81% 的总体精度证明了该网络的良好准确性。从 SEM 图像中提取了裂纹的长度分布和统计演化,从而获得了与涂层结构退化相关的裂纹动力学方程。此外,还研究了水扩散动力学和涂层附着力,因为它们代表了涂层性能的关键参数。在此基础上,利用灰色关系分析方法整合了包含三个主导因素的失效模型。该模型的平均预测误差为 2.60%,为开发基于图像的涂层寿命预测方法奠定了基础。
{"title":"Lifetime prediction of epoxy coating using convolutional neural networks and post processing image recognition methods","authors":"Fandi Meng, Yufan Chen, Jianning Chi, Huan Wang, Fuhui Wang, Li Liu","doi":"10.1038/s41529-024-00532-z","DOIUrl":"10.1038/s41529-024-00532-z","url":null,"abstract":"The rapid failure of organic coatings in deep-sea environments complicates accurate lifetime prediction. Given the rapid cracking characteristic on the coating surface in this environment, a comprehensive “performance-structure” failure model was established. Initially, a targeted image recognition approach containing convolutional neural network (CNN) and post-processing was constructed for the crack area detection. An overall precision of 82.81% demonstrated the network’s good accuracy. The length distribution and the statistical evolution of cracks were extracted from SEM images to obtain the kinetic equation of the cracks related to coating structure degradation. In addition, the kinetics of water diffusion and coating adhesion were examined, as they represent critical parameters of coating performance. Based on this achievement, a failure model incorporating three dominant factors was integrated by the gray relational analysis method. The average prediction error of the model was 2.60%, which lays the groundwork for developing image-based methods to predict coating life.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00532-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of variable humidity on corrosion fatigue of AA7085-T7451 with surface salt deposits 湿度变化对表面盐沉积 AA7085-T7451 腐蚀疲劳的影响
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1038/s41529-024-00530-1
Brandon Free, Gabriella C. Montiel, Gabriella A. Marino, Eric Schindelholz, Sarah Galyon Dorman, Jenifer S. Warner Locke
Corrosion fatigue (CF) crack growth is quantified as a function of relative humidity (RH) using AA7085-T7451 samples with NaCl deposited to understand the effect of deliquesced surface electrolyte droplets on CF performance when humidity varies. Fracture mechanics testing holding mechanical driving forces for cracking constant and incrementally increasing humidity show that crack growth rate (da/dN) more than doubles once RH moves above 78–80% RH. When decreasing RH, some amount of drying below the efflorescence RH (ERH) and/or a sufficient time is needed to pass in order for da/dN to return to that expected for a dry crack tip. All in all, this study establishes time of crack tip wetness as an important parameter for predicting fatigue lifetimes in atmospheric conditions, a parameter that cannot be solely predicted by RH, as accelerated cracking can continue for a limited amount of time even when RH is brought below the ERH.
使用沉积了氯化钠的 AA7085-T7451 样品,对腐蚀疲劳 (CF) 裂纹增长与相对湿度 (RH) 的函数关系进行了量化,以了解湿度变化时潮解表面电解质液滴对 CF 性能的影响。断裂力学测试表明,当相对湿度超过 78-80% RH 时,裂纹增长率(da/dN)会增加一倍以上。在降低相对湿度时,需要在一定程度上干燥到低于渗出相对湿度(ERH)和/或足够长的时间后,da/dN 才能恢复到干燥裂缝尖端的预期值。总之,这项研究确定了裂纹尖端潮湿时间是预测大气条件下疲劳寿命的一个重要参数,而这一参数不能仅由相对湿度来预测,因为即使相对湿度低于 ERH,加速开裂也会持续有限的时间。
{"title":"The effect of variable humidity on corrosion fatigue of AA7085-T7451 with surface salt deposits","authors":"Brandon Free, Gabriella C. Montiel, Gabriella A. Marino, Eric Schindelholz, Sarah Galyon Dorman, Jenifer S. Warner Locke","doi":"10.1038/s41529-024-00530-1","DOIUrl":"10.1038/s41529-024-00530-1","url":null,"abstract":"Corrosion fatigue (CF) crack growth is quantified as a function of relative humidity (RH) using AA7085-T7451 samples with NaCl deposited to understand the effect of deliquesced surface electrolyte droplets on CF performance when humidity varies. Fracture mechanics testing holding mechanical driving forces for cracking constant and incrementally increasing humidity show that crack growth rate (da/dN) more than doubles once RH moves above 78–80% RH. When decreasing RH, some amount of drying below the efflorescence RH (ERH) and/or a sufficient time is needed to pass in order for da/dN to return to that expected for a dry crack tip. All in all, this study establishes time of crack tip wetness as an important parameter for predicting fatigue lifetimes in atmospheric conditions, a parameter that cannot be solely predicted by RH, as accelerated cracking can continue for a limited amount of time even when RH is brought below the ERH.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00530-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Film-forming amines as corrosion inhibitors: a state-of-the-art review 作为缓蚀剂的成膜胺:最新进展综述
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1038/s41529-024-00523-0
Deni Jero, Nicolas Caussé, Nadine Pébère
This review summarizes the use of film-forming amines (FFAs) for corrosion protection in water/steam industrial circuits, focusing on carbon steel. It discusses industrial feedback on FFAs’ benefits and challenges, alongside experimental methods for studying their inhibition and structural properties. Key research areas include FFAs’ corrosion inhibition mechanisms, adsorption kinetics, and layer structures. The review also identifies knowledge gaps and suggests future research directions to deepen the understanding of FFAs.
本综述总结了成膜胺(FFAs)在水/蒸汽工业回路中的腐蚀防护应用,重点是碳钢。文章讨论了工业界对 FFAs 的益处和挑战的反馈,以及研究其抑制和结构特性的实验方法。主要研究领域包括反式脂肪酸的缓蚀机理、吸附动力学和层结构。综述还指出了知识差距,并提出了未来的研究方向,以加深对反式脂肪酸的了解。
{"title":"Film-forming amines as corrosion inhibitors: a state-of-the-art review","authors":"Deni Jero, Nicolas Caussé, Nadine Pébère","doi":"10.1038/s41529-024-00523-0","DOIUrl":"10.1038/s41529-024-00523-0","url":null,"abstract":"This review summarizes the use of film-forming amines (FFAs) for corrosion protection in water/steam industrial circuits, focusing on carbon steel. It discusses industrial feedback on FFAs’ benefits and challenges, alongside experimental methods for studying their inhibition and structural properties. Key research areas include FFAs’ corrosion inhibition mechanisms, adsorption kinetics, and layer structures. The review also identifies knowledge gaps and suggests future research directions to deepen the understanding of FFAs.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00523-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the mechanism behind irregular inclusions triggering no HIC cracks in steels 揭示不规则夹杂物引发钢中无 HIC 裂纹的机理
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1038/s41529-024-00525-y
Rongzhe Hu, Zhixian Peng, Shiqi Zhang, Liquan Ding, Feng Huang, Zhengliang Xue, Jing Liu
This research investigates a specific type of irregularly shaped inclusions in steel, which are typically considered detrimental. A comparative study of two steels, treated with different inclusion modification methods by oxide metallurgy technology, reveals that spherical inclusions with complex structures can provide beneficial multipoint trap sites for hydrogen, thereby reducing the risk of hydrogen-induced cracking (HIC). Notably, irregular stripe-shaped silicate-oxide inclusions with sharp tips, due to their hot-soft characteristics during the process of hot-rolling, do not exacerbate cracks but instead mitigate local stresses. Conversely, large single-phase hard inclusions are detrimental to HIC resistance. This investigation provides insights into the mechanisms behind why certain irregular inclusions do not trigger HIC crack after the NACE TM 0284-2016 standard test.
这项研究调查了钢中一种特殊的不规则夹杂物,这种夹杂物通常被认为是有害的。通过对采用氧化物冶金技术的不同夹杂物改性方法处理的两种钢材进行比较研究,发现具有复杂结构的球形夹杂物可以为氢提供有益的多点捕集点,从而降低氢致开裂(HIC)的风险。值得注意的是,具有尖锐尖端的不规则条纹状氧化硅夹杂物由于在热轧过程中具有热软特性,不仅不会加剧裂纹,反而会减轻局部应力。相反,大的单相硬夹杂物不利于抗 HIC 性能。这项调查有助于深入了解某些不规则夹杂物在经过 NACE TM 0284-2016 标准测试后不会引发 HIC 裂纹的机制。
{"title":"Unveiling the mechanism behind irregular inclusions triggering no HIC cracks in steels","authors":"Rongzhe Hu, Zhixian Peng, Shiqi Zhang, Liquan Ding, Feng Huang, Zhengliang Xue, Jing Liu","doi":"10.1038/s41529-024-00525-y","DOIUrl":"10.1038/s41529-024-00525-y","url":null,"abstract":"This research investigates a specific type of irregularly shaped inclusions in steel, which are typically considered detrimental. A comparative study of two steels, treated with different inclusion modification methods by oxide metallurgy technology, reveals that spherical inclusions with complex structures can provide beneficial multipoint trap sites for hydrogen, thereby reducing the risk of hydrogen-induced cracking (HIC). Notably, irregular stripe-shaped silicate-oxide inclusions with sharp tips, due to their hot-soft characteristics during the process of hot-rolling, do not exacerbate cracks but instead mitigate local stresses. Conversely, large single-phase hard inclusions are detrimental to HIC resistance. This investigation provides insights into the mechanisms behind why certain irregular inclusions do not trigger HIC crack after the NACE TM 0284-2016 standard test.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-15"},"PeriodicalIF":6.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00525-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Materials Degradation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1