Building TiO2-Ti3C2Tx heterojunction by microwave-assisted hydrothermal as an amphiphilic nanoreactor for high-performance lithium sulfur batteries

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-10-16 DOI:10.1016/j.mtphys.2024.101571
Yu Jiang , Rong Yang , Lei Mao , Guozhuang Gao , Chaojiang Fan , Bailing Jiang , Haochen Liu , Yinglin Yan
{"title":"Building TiO2-Ti3C2Tx heterojunction by microwave-assisted hydrothermal as an amphiphilic nanoreactor for high-performance lithium sulfur batteries","authors":"Yu Jiang ,&nbsp;Rong Yang ,&nbsp;Lei Mao ,&nbsp;Guozhuang Gao ,&nbsp;Chaojiang Fan ,&nbsp;Bailing Jiang ,&nbsp;Haochen Liu ,&nbsp;Yinglin Yan","doi":"10.1016/j.mtphys.2024.101571","DOIUrl":null,"url":null,"abstract":"<div><div>The adoption of lithium-sulfur (Li-S) batteries faces significant obstacles due to the notorious lithium polysulfides (LiPSs) shuttle effect and sluggish electrochemical reaction kinetics. To tackle these issues, MXene, with the unique layered structures and metal centers, have emerged as promising additives in Li-S batteries, effectively hindering the migration of polysulfides through physical and chemical confinement mechanisms. However, MXenes inherently lack robust anchoring sites for LiPSs, leading to suboptimal cycle stability. Here, TiO<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> (TT) heterojunction derived from MXene is constructed by the microwave-assisted hydrothermal (MAH). This innovative TT composite incorporates an amphiphilic nanoreactor that synergistically adsorbs, catalyzes LiPSs, and stabilizes the lithium anode in Li-S batteries. The optimally exposed surface of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and nano-sized TiO<sub>2</sub> within the TT architecture collaborate to “conduct, adsorb and transform” LiPSs, while the heterogeneous interface and crumpled sheets provide an efficient three-dimensional transport pathway for Li<sup>+</sup> in the electrolyte, collaboratively enhancing the stability of Li-S batteries. Therefore, the TT-160 as an interlayer for Li-S battery exhibits an ultra-low capacity attenuation of each cycle of 0.022 % after 1000 cycles at 2 C. Furthermore, the conductive interlayer facilitates a uniform distribution of Li<sup>+</sup> transport, enabling a Li//Li symmetric cell assembled with TT-160 to achieve remarkable stability over 1000 h. This work pioneeringly demonstrates the potential of MXene-derived TiO<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> heterojunction, synthesized via MAH for high-performance Li-S batteries, opening up new avenues for material design and optimization.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101571"},"PeriodicalIF":10.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002475","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The adoption of lithium-sulfur (Li-S) batteries faces significant obstacles due to the notorious lithium polysulfides (LiPSs) shuttle effect and sluggish electrochemical reaction kinetics. To tackle these issues, MXene, with the unique layered structures and metal centers, have emerged as promising additives in Li-S batteries, effectively hindering the migration of polysulfides through physical and chemical confinement mechanisms. However, MXenes inherently lack robust anchoring sites for LiPSs, leading to suboptimal cycle stability. Here, TiO2-Ti3C2Tx (TT) heterojunction derived from MXene is constructed by the microwave-assisted hydrothermal (MAH). This innovative TT composite incorporates an amphiphilic nanoreactor that synergistically adsorbs, catalyzes LiPSs, and stabilizes the lithium anode in Li-S batteries. The optimally exposed surface of Ti3C2Tx and nano-sized TiO2 within the TT architecture collaborate to “conduct, adsorb and transform” LiPSs, while the heterogeneous interface and crumpled sheets provide an efficient three-dimensional transport pathway for Li+ in the electrolyte, collaboratively enhancing the stability of Li-S batteries. Therefore, the TT-160 as an interlayer for Li-S battery exhibits an ultra-low capacity attenuation of each cycle of 0.022 % after 1000 cycles at 2 C. Furthermore, the conductive interlayer facilitates a uniform distribution of Li+ transport, enabling a Li//Li symmetric cell assembled with TT-160 to achieve remarkable stability over 1000 h. This work pioneeringly demonstrates the potential of MXene-derived TiO2-Ti3C2Tx heterojunction, synthesized via MAH for high-performance Li-S batteries, opening up new avenues for material design and optimization.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过微波辅助水热法构建 TiO2-Ti3C2Tx 异质结,作为高性能锂硫电池的两性纳米反应器
由于众所周知的锂多硫化物(LiPSs)穿梭效应和缓慢的电化学反应动力学,锂硫(Li-S)电池的应用面临着巨大障碍。为了解决这些问题,具有独特层状结构和金属中心的 MXene 已成为锂-S 电池中很有前景的添加剂,它通过物理和化学限制机制有效地阻碍了多硫化物的迁移。然而,MXenes 本身缺乏锂多硫化物的稳固锚定位点,导致循环稳定性不理想。本文通过微波辅助水热法(MAH)构建了源自 MXene 的 TiO2-Ti3C2Tx(TT)异质结。这种创新的 TT 复合材料结合了一种两亲性纳米反应器,可协同吸附、催化锂离子电池并稳定锂离子电池中的锂阳极。在 TT 结构中,Ti3C2Tx 的最佳暴露表面和纳米尺寸的 TiO2 可协同 "传导、吸附和转化 "锂离子,而异质界面和皱褶片则为电解液中的 Li+ 提供了有效的三维传输途径,从而共同提高了锂离子电池的稳定性。因此,TT-160 作为锂-S 电池的中间膜,在 2 C 条件下循环 1000 次后,每次循环的容量衰减仅为 0.022%,具有超低的容量衰减。此外,导电中间膜促进了 Li+ 传输的均匀分布,使得使用 TT-160 组装的锂/锂对称电池在 1000 小时内具有出色的稳定性。这项工作开创性地证明了通过 MAH 合成的 MXene 衍生 TiO2-Ti3C2Tx 异质结在高性能锂-S 电池方面的潜力,为材料设计和优化开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Mist CVD Technology for Gallium Oxide Deposition: A Review Atomic Imprint Crystallization: Externally-Templated Crystallization of Amorphous Silicon Achieving ultra-high resistivity and outstanding piezoelectric properties by co-substitution in CaBi2Nb2O9 ceramics Data-driven design of thermal-mechanical multifunctional metamaterials Construction of bifunctional MOF-based composite electrocatalysts promoting oxygen evolution reaction and glucose oxidation reaction and its kinetic deciphering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1