Self-promoted Controlled Ring-opening Polymerization via Side Chain-mediated Proton Transfer for the Synthesis of Tertiary Amine-pendant Polypeptoids

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-10-16 DOI:10.1002/anie.202417990
Mingzhen Liao, Yao Yao, Kunyu Gan, Xianghua Su, Ning Zhao, Ronald N. Zuckermann, Sunting Xuan, Zhengbiao Zhang
{"title":"Self-promoted Controlled Ring-opening Polymerization via Side Chain-mediated Proton Transfer for the Synthesis of Tertiary Amine-pendant Polypeptoids","authors":"Mingzhen Liao, Yao Yao, Kunyu Gan, Xianghua Su, Ning Zhao, Ronald N. Zuckermann, Sunting Xuan, Zhengbiao Zhang","doi":"10.1002/anie.202417990","DOIUrl":null,"url":null,"abstract":"Proton transfer is essential in virtually all biochemical processes, with enzymes facilitating this transfer by optimizing the proximity and orientation of reactants through site-specific hydrogen bonds. Proton transfer is also crucial in the rate-determining step for the ring-opening polymerization of N-carboxyanhydrides (NCAs), widely used to prepare various peptidomimetic materials. This study utilizes side chain-assisted strategy to accelerate the rate of chain propagation by using NCAs with tertiary amine pendants. This moiety enables hydrogen bond formation between the incoming NCA and the polymer amino growing end. The tertiary amine side chain of the NCA forms a proton shuttle, via a less constrained transition state, to facilitate the proton transfer process. Moreover, the tertiary amine side chains enable the precipitation of NCA monomers through in situ protonation during the monomer synthesis. This greatly facilitates the synthesis of these unreported monomers, allowing the direct controlled synthesis of tertiary amine-pendant polypeptoids. This side chain-promoted polymerization has rarely been reported. Additionally, the tertiary amine side chains, as widely used functional groups, endow the polymers with unique properties including pH- and thermo-responsiveness, tunable pKas, and siRNA transfection capability. The self-promoted synthesis, facile monomer preparation, and attractive properties make tertiary amine-pendant polypeptoids promising materials for various applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417990","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Proton transfer is essential in virtually all biochemical processes, with enzymes facilitating this transfer by optimizing the proximity and orientation of reactants through site-specific hydrogen bonds. Proton transfer is also crucial in the rate-determining step for the ring-opening polymerization of N-carboxyanhydrides (NCAs), widely used to prepare various peptidomimetic materials. This study utilizes side chain-assisted strategy to accelerate the rate of chain propagation by using NCAs with tertiary amine pendants. This moiety enables hydrogen bond formation between the incoming NCA and the polymer amino growing end. The tertiary amine side chain of the NCA forms a proton shuttle, via a less constrained transition state, to facilitate the proton transfer process. Moreover, the tertiary amine side chains enable the precipitation of NCA monomers through in situ protonation during the monomer synthesis. This greatly facilitates the synthesis of these unreported monomers, allowing the direct controlled synthesis of tertiary amine-pendant polypeptoids. This side chain-promoted polymerization has rarely been reported. Additionally, the tertiary amine side chains, as widely used functional groups, endow the polymers with unique properties including pH- and thermo-responsiveness, tunable pKas, and siRNA transfection capability. The self-promoted synthesis, facile monomer preparation, and attractive properties make tertiary amine-pendant polypeptoids promising materials for various applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过侧链介导的质子转移自促受控开环聚合反应合成叔胺多肽类化合物
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Self-promoted Controlled Ring-opening Polymerization via Side Chain-mediated Proton Transfer for the Synthesis of Tertiary Amine-pendant Polypeptoids Fe-Catalyzed α-C(sp3)–H Amination of N-Heterocycles Solvent Polarity-Induced Regulation of Cation Solvation Sheaths for High-Voltage Zinc-Based Batteries with a 1.94 V Discharge Platform Oxyanions Enhancing Crystallinity of Reconstructed Phase for Oxygen Evolution Reaction Selective Glycan Presentation in Liquid-Ordered or -Disordered Membrane Phases and its Effect on Lectin Binding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1