A three-in-one strategy of high-entropy, single-crystal, and biphasic approaches to design O3-type layered cathodes for sodium-ion batteries

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-10-15 DOI:10.1016/j.ensm.2024.103841
Kanghui Tian , Yuzhen Dang , Zhe Xu , Runguo Zheng , Zhiyuan Wang , Dan Wang , Yanguo Liu , Qinchao Wang
{"title":"A three-in-one strategy of high-entropy, single-crystal, and biphasic approaches to design O3-type layered cathodes for sodium-ion batteries","authors":"Kanghui Tian ,&nbsp;Yuzhen Dang ,&nbsp;Zhe Xu ,&nbsp;Runguo Zheng ,&nbsp;Zhiyuan Wang ,&nbsp;Dan Wang ,&nbsp;Yanguo Liu ,&nbsp;Qinchao Wang","doi":"10.1016/j.ensm.2024.103841","DOIUrl":null,"url":null,"abstract":"<div><div>O3-type layered oxides are promising cathodes for sodium-ion batteries (SIBs). However, severe volume changes, irreversible phase transitions, and sluggish Na<sup>+</sup> ion transport kinetics lead to structural collapse and severe capacity loss. Herein, a three-in-one strategy “high entropy, single crystal, and biphase” is proposed to design O3-type layered cathodes for SIBs, which achieves enhanced structural stability and Na<sup>+</sup> transport kinetics by the combination effect of multimetal high-entropy, the single crystal, and Li substitution. The as-prepared high-entropy oxide (HEO) cathode, Na(Fe<sub>1/6</sub>Co<sub>1/6</sub>Ni<sub>1/6</sub>Mn<sub>1/6</sub>Ti<sub>1/6</sub>)Li<sub>1/6</sub>O<sub>2</sub>, exhibits a high reversible capacity of 140.3 mAh <em>g</em><sup>−1</sup>, robust cycling stability, exceptional rate capability (86 mAh <em>g</em><sup>−1</sup> at rates of 15C), excellent air-stability, and water-resistance ability. <em>In situ</em> X-ray diffraction reveals that the HEO cathode has highly reversible phase transitions and small volume change (ΔV=3.28 %). <em>Ex situ</em> X-ray absorption spectroscopy reveals that reversible Ni<sup>2+</sup>/Ni<sup>4+</sup>, Fe<sup>3+</sup>/Fe<sup>3.6+</sup>, and Co<sup>3+</sup>/Co<sup>3.6+</sup> redox couples provide charge compensation for the high-entropy cathode at 2.0∼4.2 V. Notably, the full-cell battery based on the high-entropy cathode and hard carbon anode delivers a specific capacity of 134.3 mAh <em>g</em><sup>−1</sup> and an energy density of 390.8 Wh kg<sup>−1</sup>. This work provides valuable insights into the design of novel high-performance high-entropy cathodes for SIBs, highlighting a promising avenue for advancing rechargeable battery technology.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103841"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006676","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

O3-type layered oxides are promising cathodes for sodium-ion batteries (SIBs). However, severe volume changes, irreversible phase transitions, and sluggish Na+ ion transport kinetics lead to structural collapse and severe capacity loss. Herein, a three-in-one strategy “high entropy, single crystal, and biphase” is proposed to design O3-type layered cathodes for SIBs, which achieves enhanced structural stability and Na+ transport kinetics by the combination effect of multimetal high-entropy, the single crystal, and Li substitution. The as-prepared high-entropy oxide (HEO) cathode, Na(Fe1/6Co1/6Ni1/6Mn1/6Ti1/6)Li1/6O2, exhibits a high reversible capacity of 140.3 mAh g−1, robust cycling stability, exceptional rate capability (86 mAh g−1 at rates of 15C), excellent air-stability, and water-resistance ability. In situ X-ray diffraction reveals that the HEO cathode has highly reversible phase transitions and small volume change (ΔV=3.28 %). Ex situ X-ray absorption spectroscopy reveals that reversible Ni2+/Ni4+, Fe3+/Fe3.6+, and Co3+/Co3.6+ redox couples provide charge compensation for the high-entropy cathode at 2.0∼4.2 V. Notably, the full-cell battery based on the high-entropy cathode and hard carbon anode delivers a specific capacity of 134.3 mAh g−1 and an energy density of 390.8 Wh kg−1. This work provides valuable insights into the design of novel high-performance high-entropy cathodes for SIBs, highlighting a promising avenue for advancing rechargeable battery technology.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计钠离子电池 O3 型层状阴极的高熵法、单晶法和双相法三合一策略
O3 型层状氧化物是钠离子电池(SIB)的理想阴极。然而,严重的体积变化、不可逆相变和缓慢的 Na+ 离子传输动力学会导致结构坍塌和严重的容量损失。本文提出了 "高熵、单晶、双相 "三位一体的钠离子电池 O3 型层状阴极设计策略,通过多金属高熵、单晶和锂置换的组合效应,实现结构稳定性和 Na+ 传输动力学的增强。制备的高熵氧化物(HEO)阴极--Na(Fe1/6Co1/6Ni1/6Mn1/6Ti1/6)Li1/6O2--显示出 140.3 mAh g-1 的高可逆容量、强大的循环稳定性、卓越的速率能力(在速率为 15C 时为 86 mAh g-1)、优异的空气稳定性和耐水性。原位 X 射线衍射显示,HEO 阴极具有高度可逆的相变和较小的体积变化(ΔV=3.28%)。原位 X 射线吸收光谱显示,可逆的 Ni2+/Ni4+、Fe3+/Fe3.6+ 和 Co3+/Co3.6+ 氧化还原偶在 2.0∼4.2 V 的电压下为高熵阴极提供电荷补偿。这项研究为设计用于 SIB 的新型高性能高熵阴极提供了有价值的见解,为推进可充电电池技术的发展提供了一条大有可为的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Optimized molecular interactions significantly enhance capacitive energy storage in polymer blends at 150 °C A High Power Flexible Zn-Air Battery via Concurrent PAA Modulation and Structural Tuning Surface acidity regulation for boosting Li2O2 decomposition towards lower charge overpotential Li–O2 batteries “Preferential Adsorption-Decomposition and Strong Binding” Strategy-Derived Interphase Enabling Fast-Charging and Wide-Temperature Sodium Metal Batteries Unlocking Advanced Sodium Storage Performance: High-Entropy Modulates Crystallographic Sites with Reversible Multi-Electron Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1