Jessica Foret, Jung-Gun Kim, Elizabeth S Sattely, Mary Beth Mudgett
{"title":"Transcriptome analysis reveals role of transcription factor WRKY70 in early N-hydroxy-pipecolic acid signaling","authors":"Jessica Foret, Jung-Gun Kim, Elizabeth S Sattely, Mary Beth Mudgett","doi":"10.1093/plphys/kiae544","DOIUrl":null,"url":null,"abstract":"N-hydroxy-pipecolic acid (NHP) is a mobile metabolite essential for inducing and amplifying systemic acquired resistance (SAR) following pathogen attack. Early phases of NHP signaling leading to immunity have remained elusive. Here, we report the early transcriptional changes mediated by NHP and the role salicylic acid (SA) plays during this response in Arabidopsis (Arabidopsis thaliana). We show that distinct waves of expression within minutes to hours of NHP treatment include increased expression of WRKY transcription factor genes as the primary transcriptional response, followed by the induction of WRKY-regulated defense genes as the secondary response. Most genes induced by NHP within minutes were SA-dependent, whereas those induced within hours were SA-independent. These data suggest that NHP induces the primary transcriptional response under basal levels of SA and that new SA biosynthesis via ISOCHORISMATE SYNTHASE 1/SA-INDUCTION DEFICIT 2 (ICS1/SID2) is dispensable for inducing the secondary transcriptional response. We demonstrate that WRKY70 is required for the induced expression of a set of genes defining some of the secondary transcriptional response, SAR protection, and NHP-dependent enhancement of ROS production in response to flagellin treatment. Our study highlights the key genes and pathways defining early NHP responses and the role of WRKY70 in regulating NHP-dependent transcription.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"28 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae544","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
N-hydroxy-pipecolic acid (NHP) is a mobile metabolite essential for inducing and amplifying systemic acquired resistance (SAR) following pathogen attack. Early phases of NHP signaling leading to immunity have remained elusive. Here, we report the early transcriptional changes mediated by NHP and the role salicylic acid (SA) plays during this response in Arabidopsis (Arabidopsis thaliana). We show that distinct waves of expression within minutes to hours of NHP treatment include increased expression of WRKY transcription factor genes as the primary transcriptional response, followed by the induction of WRKY-regulated defense genes as the secondary response. Most genes induced by NHP within minutes were SA-dependent, whereas those induced within hours were SA-independent. These data suggest that NHP induces the primary transcriptional response under basal levels of SA and that new SA biosynthesis via ISOCHORISMATE SYNTHASE 1/SA-INDUCTION DEFICIT 2 (ICS1/SID2) is dispensable for inducing the secondary transcriptional response. We demonstrate that WRKY70 is required for the induced expression of a set of genes defining some of the secondary transcriptional response, SAR protection, and NHP-dependent enhancement of ROS production in response to flagellin treatment. Our study highlights the key genes and pathways defining early NHP responses and the role of WRKY70 in regulating NHP-dependent transcription.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.