Structural design and investigation of Ti3C2 MXene as a conductive interlayer for improving the lithium-storage performance of PSi@C anode material

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-10-16 DOI:10.1016/j.electacta.2024.145216
Nengwen Ding , Xiang Shi , Simin Liao , Mengyue Liu , Yefei Xu , Zhifeng Li , Juan Liu , Xiaocheng Li
{"title":"Structural design and investigation of Ti3C2 MXene as a conductive interlayer for improving the lithium-storage performance of PSi@C anode material","authors":"Nengwen Ding ,&nbsp;Xiang Shi ,&nbsp;Simin Liao ,&nbsp;Mengyue Liu ,&nbsp;Yefei Xu ,&nbsp;Zhifeng Li ,&nbsp;Juan Liu ,&nbsp;Xiaocheng Li","doi":"10.1016/j.electacta.2024.145216","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon stands out as an ideal anode material for the next generation of lithium-ion batteries (LIBs) due to its abundant sources, low lithiation/delithiation potential, and high specific capacity. However, its practical application is impeded by significant volume expansion, leading to electrode structure damage. In this study, the Porous silicon(PSi)@C/Ti<sub>3</sub>C<sub>2</sub> MXene composite was developed by dispersing porous micro-silicon@carbon (PSi@C) particles into layered stackable Ti<sub>3</sub>C<sub>2</sub> MXene sheets using ultrasonic and freeze drying. The Ti<sub>3</sub>C<sub>2</sub> MXene interlayer played a crucial role in enhancing the conductive crosslinking network between PSi@C particles, and providing efficient channels for electron transport/ion diffusion. Additionally, the Ti<sub>3</sub>C<sub>2</sub> MXene interlayer served as a buffer to accommodate the substantial volume changes in silicon during electrochemical cycling. Consequently, the PSi@C/Ti<sub>3</sub>C<sub>2</sub> MXene composite electrode demonstrated rapid electron/ion conduction and maintained structural stability. Remarkably, the electrode exhibited outstanding long cycle stability with 952 mAh g<sup>-1</sup> at 0.5 A g<sup>-1</sup> after 200 cycles and excellent rate performance with 542 mAh g<sup>-1</sup> at 2 A g<sup>-1</sup>.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"508 ","pages":"Article 145216"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001346862401452X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon stands out as an ideal anode material for the next generation of lithium-ion batteries (LIBs) due to its abundant sources, low lithiation/delithiation potential, and high specific capacity. However, its practical application is impeded by significant volume expansion, leading to electrode structure damage. In this study, the Porous silicon(PSi)@C/Ti3C2 MXene composite was developed by dispersing porous micro-silicon@carbon (PSi@C) particles into layered stackable Ti3C2 MXene sheets using ultrasonic and freeze drying. The Ti3C2 MXene interlayer played a crucial role in enhancing the conductive crosslinking network between PSi@C particles, and providing efficient channels for electron transport/ion diffusion. Additionally, the Ti3C2 MXene interlayer served as a buffer to accommodate the substantial volume changes in silicon during electrochemical cycling. Consequently, the PSi@C/Ti3C2 MXene composite electrode demonstrated rapid electron/ion conduction and maintained structural stability. Remarkably, the electrode exhibited outstanding long cycle stability with 952 mAh g-1 at 0.5 A g-1 after 200 cycles and excellent rate performance with 542 mAh g-1 at 2 A g-1.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将 Ti3C2 MXene 作为导电夹层用于提高 PSi@C 阳极材料储锂性能的结构设计与研究
硅资源丰富,锂化/退锂电位低,比容量高,是下一代锂离子电池(LIB)的理想负极材料。然而,其实际应用却因体积膨胀过大而受到阻碍,导致电极结构损坏。本研究利用超声波将多孔微硅@碳(PSi@C)颗粒分散到可分层堆叠的 Ti3C2 MXene 片材中,然后进行冷冻干燥,开发出多孔硅(PSi)@C/Ti3C2 MXene 复合材料。Ti3C2 MXene 中间层在增强 PSi@C 颗粒之间的导电交联网络以及为电子传输/离子扩散提供有效通道方面发挥了关键作用。此外,Ti3C2 MXene 中间膜还起到缓冲作用,以适应电化学循环过程中硅体积的大幅变化。因此,PSi@C/Ti3C2 MXene 复合电极既能快速传导电子/离子,又能保持结构的稳定性。值得注意的是,该电极表现出了出色的长周期稳定性,在循环 200 次后,0.5 A g-1 时的电量为 952 mAh g-1,在 2 A g-1 时的电量为 542 mAh g-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Recent SI Future SI Editorial Board ISE pages Surface Engineering-induced Highly Dispersed and Polycrystalline Structured Nickel Phosphide Nano Catalysts for Lithium-sulfur Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1