Shailendra Segobin, Roy A. M. Haast, Vinod Jangir Kumar, Annalisa Lella, Anneke Alkemade, Meritxell Bach Cuadra, Emmanuel J. Barbeau, Olivier Felician, Giulio Pergola, Anne-Lise Pitel, Manojkumar Saranathan, Thomas Tourdias, Michael Hornberger
{"title":"A roadmap towards standardized neuroimaging approaches for human thalamic nuclei","authors":"Shailendra Segobin, Roy A. M. Haast, Vinod Jangir Kumar, Annalisa Lella, Anneke Alkemade, Meritxell Bach Cuadra, Emmanuel J. Barbeau, Olivier Felician, Giulio Pergola, Anne-Lise Pitel, Manojkumar Saranathan, Thomas Tourdias, Michael Hornberger","doi":"10.1038/s41583-024-00867-1","DOIUrl":null,"url":null,"abstract":"The thalamus has a key role in mediating cortical–subcortical interactions but is often neglected in neuroimaging studies, which mostly focus on changes in cortical structure and activity. One of the main reasons for the thalamus being overlooked is that the delineation of individual thalamic nuclei via neuroimaging remains controversial. Indeed, neuroimaging atlases vary substantially regarding which thalamic nuclei are included and how their delineations were established. Here, we review current and emerging methods for thalamic nuclei segmentation in neuroimaging data and consider the limitations of existing techniques in terms of their research and clinical applicability. We address these challenges by proposing a roadmap to improve thalamic nuclei segmentation in human neuroimaging and, in turn, harmonize research approaches and advance clinical applications. We believe that a collective effort is required to achieve this. We hope that this will ultimately lead to the thalamic nuclei being regarded as key brain regions in their own right and not (as often currently assumed) as simply a gateway between cortical and subcortical regions. The human thalamus comprises multiple nuclei with distinct connectivity patterns and anatomical features; however, current neuroimaging approaches have a limited capacity to delinate individual thalamic nuclei. Segobin and colleagues outline the challenges that this presents to our understanding of the function of these nuclei and propose a roadmap for the future of thalamic neuroimaging.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 12","pages":"792-808"},"PeriodicalIF":28.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41583-024-00867-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The thalamus has a key role in mediating cortical–subcortical interactions but is often neglected in neuroimaging studies, which mostly focus on changes in cortical structure and activity. One of the main reasons for the thalamus being overlooked is that the delineation of individual thalamic nuclei via neuroimaging remains controversial. Indeed, neuroimaging atlases vary substantially regarding which thalamic nuclei are included and how their delineations were established. Here, we review current and emerging methods for thalamic nuclei segmentation in neuroimaging data and consider the limitations of existing techniques in terms of their research and clinical applicability. We address these challenges by proposing a roadmap to improve thalamic nuclei segmentation in human neuroimaging and, in turn, harmonize research approaches and advance clinical applications. We believe that a collective effort is required to achieve this. We hope that this will ultimately lead to the thalamic nuclei being regarded as key brain regions in their own right and not (as often currently assumed) as simply a gateway between cortical and subcortical regions. The human thalamus comprises multiple nuclei with distinct connectivity patterns and anatomical features; however, current neuroimaging approaches have a limited capacity to delinate individual thalamic nuclei. Segobin and colleagues outline the challenges that this presents to our understanding of the function of these nuclei and propose a roadmap for the future of thalamic neuroimaging.
期刊介绍:
Nature Reviews Neuroscience is a multidisciplinary journal that covers various fields within neuroscience, aiming to offer a comprehensive understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience, facilitated by powerful experimental techniques and theoretical approaches, have made enduring neurobiological questions more accessible. Nature Reviews Neuroscience serves as a reliable and accessible resource, addressing the breadth and depth of modern neuroscience. It acts as an authoritative and engaging reference for scientists interested in all aspects of neuroscience.