Li Gao, Li-ang Zheng, Bo Lu, Shaoping Shi, Long Tian, Yaohui Zheng
{"title":"Generation of squeezed vacuum state in the millihertz frequency band","authors":"Li Gao, Li-ang Zheng, Bo Lu, Shaoping Shi, Long Tian, Yaohui Zheng","doi":"10.1038/s41377-024-01606-y","DOIUrl":null,"url":null,"abstract":"<p>The detection of gravitational waves has ushered in a new era of observing the universe. Quantum resource advantages offer significant enhancements to the sensitivity of gravitational wave observatories. While squeezed states for ground-based gravitational wave detection have received marked attention, the generation of squeezed states suitable for mid-to-low-frequency detection has remained unexplored. To address the gap in squeezed state optical fields at ultra-low frequencies, we report on the first direct observation of a squeezed vacuum field until Fourier frequency of 4 millihertz with the quantum noise reduction of up to 8.0 dB, by the employment of a multiple noise suppression scheme. Our work provides quantum resources for future gravitational wave observatories, facilitating the development of quantum precision measurement.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"11 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01606-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of gravitational waves has ushered in a new era of observing the universe. Quantum resource advantages offer significant enhancements to the sensitivity of gravitational wave observatories. While squeezed states for ground-based gravitational wave detection have received marked attention, the generation of squeezed states suitable for mid-to-low-frequency detection has remained unexplored. To address the gap in squeezed state optical fields at ultra-low frequencies, we report on the first direct observation of a squeezed vacuum field until Fourier frequency of 4 millihertz with the quantum noise reduction of up to 8.0 dB, by the employment of a multiple noise suppression scheme. Our work provides quantum resources for future gravitational wave observatories, facilitating the development of quantum precision measurement.