Efficient and cost-effective maximum power point tracking technique for solar photovoltaic systems with Li-ion battery charging

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Integration-The Vlsi Journal Pub Date : 2024-10-13 DOI:10.1016/j.vlsi.2024.102298
{"title":"Efficient and cost-effective maximum power point tracking technique for solar photovoltaic systems with Li-ion battery charging","authors":"","doi":"10.1016/j.vlsi.2024.102298","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an effective approach to achieve maximum power point tracking (MPPT) in photovoltaic (PV) systems for battery charging using a single-sensor incremental conductance (InC) method. The objective is to optimize the MPPT process while minimizing the number of sensors required. The suggested technique leverages the relationship between the PV module's output voltage and the duty cycle to automatically adjust and reach the MPP, resulting in optimal power generation. By eliminating the PV current sensor from the control circuit, the developed method reduces both the cost and size of the MPPT circuit. Compared to the conventional InC method, the developed approach demonstrates improved response speed and accuracy in steady-state operation, along with the ability to damp oscillations near the MPP. Extensive simulations using MATLAB/Simulink validate the performance of the developed technique across various environmental conditions. The results highlight the recommended method's realistic and effective MPP tracking capabilities, achieving higher efficiency (99.12 %) compared to the classical method (97.8 %) under high irradiance levels.</div></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024001627","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an effective approach to achieve maximum power point tracking (MPPT) in photovoltaic (PV) systems for battery charging using a single-sensor incremental conductance (InC) method. The objective is to optimize the MPPT process while minimizing the number of sensors required. The suggested technique leverages the relationship between the PV module's output voltage and the duty cycle to automatically adjust and reach the MPP, resulting in optimal power generation. By eliminating the PV current sensor from the control circuit, the developed method reduces both the cost and size of the MPPT circuit. Compared to the conventional InC method, the developed approach demonstrates improved response speed and accuracy in steady-state operation, along with the ability to damp oscillations near the MPP. Extensive simulations using MATLAB/Simulink validate the performance of the developed technique across various environmental conditions. The results highlight the recommended method's realistic and effective MPP tracking capabilities, achieving higher efficiency (99.12 %) compared to the classical method (97.8 %) under high irradiance levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对锂离子电池充电太阳能光伏系统的高效、经济的最大功率点跟踪技术
本文提出了一种有效的方法,利用单传感器增量电导(InC)方法实现光伏(PV)系统中的最大功率点跟踪(MPPT),为电池充电。目标是优化 MPPT 过程,同时尽量减少所需的传感器数量。所建议的技术利用光伏模块输出电压与占空比之间的关系,自动调整并达到 MPP,从而实现最佳发电效果。通过消除控制电路中的光伏电流传感器,所开发的方法降低了 MPPT 电路的成本和体积。与传统的 InC 方法相比,所开发的方法提高了稳态运行的响应速度和精度,并能抑制 MPP 附近的振荡。使用 MATLAB/Simulink 进行的大量仿真验证了所开发技术在各种环境条件下的性能。结果凸显了所推荐方法真实有效的 MPP 跟踪能力,在高辐照度条件下,与传统方法(97.8%)相比,效率更高(99.12%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Integration-The Vlsi Journal
Integration-The Vlsi Journal 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.30%
发文量
107
审稿时长
6 months
期刊介绍: Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics: Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.
期刊最新文献
Simple memristive chaotic systems with complex dynamics Model and system robustness in distributed CNN inference at the edge VLFF — A very low-power flip-flop with only two clock transistors Efficient and cost-effective maximum power point tracking technique for solar photovoltaic systems with Li-ion battery charging Digital background calibration algorithm for pipelined ADC based on time-delay neural network with genetic algorithm feature selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1