{"title":"Insecticide binding mode analysis and biological effects of acetylcholinesterase target-site resistance mutations in Spodoptera frugiperda","authors":"","doi":"10.1016/j.pestbp.2024.106164","DOIUrl":null,"url":null,"abstract":"<div><div>It is urgent to solve insecticide resistance issues for fall armyworm (FAW), <em>Spodoptera frugiperda</em>. Some acetylcholinesterase-1 (Ace-1) mutations (A201S, G227A and F290V) have been identified as a cause of FAW resistance to organophosphates (OPs) and carbamates insecticides (CXs). However, the structural biological mechanisms on the relationship between the Ace-1 mutations and resistance to OPs and CXs still remain elusive. In this study, the A201S and F290V mutaions were found in eight fields populations of FAW except the G227A. Molecular docking revealed that the four Ace-1 proteins (Ace1-WT, Ace1-A201S, Ace1-G227A and Ace1-F290V) had the same binding modes and the same binding energies with acetylcholine (Ach), trichlorfon, chlorpyrifos, methomyl, carbaryl and chlorpyrifos oxide. The structural biological analysis revealed that the A201S mutations can enhance enzyme catalytic efficiency by introducing the hydroxyl group (-OH) from serine which performed the same function as the main-chain -NH and enhanced the interaction with the carboxy oxygen of acetylcholine (Ach), and the F290V mutation can effectively improve FAW resistance to insecticides by increasing the likelihood of Ach to enter the enzyme's active center for phenylalanine replaced by smaller valine under insecticide inhibition conditions. The bioassays and age-stage-specific life table analysis of FAW-SS and FAW-F290V populations revealed that F290V mutation effectively contributed to FAW resistance with a low fitness cost. This study provides a theoretical basis for future pest resistance management.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524003973","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is urgent to solve insecticide resistance issues for fall armyworm (FAW), Spodoptera frugiperda. Some acetylcholinesterase-1 (Ace-1) mutations (A201S, G227A and F290V) have been identified as a cause of FAW resistance to organophosphates (OPs) and carbamates insecticides (CXs). However, the structural biological mechanisms on the relationship between the Ace-1 mutations and resistance to OPs and CXs still remain elusive. In this study, the A201S and F290V mutaions were found in eight fields populations of FAW except the G227A. Molecular docking revealed that the four Ace-1 proteins (Ace1-WT, Ace1-A201S, Ace1-G227A and Ace1-F290V) had the same binding modes and the same binding energies with acetylcholine (Ach), trichlorfon, chlorpyrifos, methomyl, carbaryl and chlorpyrifos oxide. The structural biological analysis revealed that the A201S mutations can enhance enzyme catalytic efficiency by introducing the hydroxyl group (-OH) from serine which performed the same function as the main-chain -NH and enhanced the interaction with the carboxy oxygen of acetylcholine (Ach), and the F290V mutation can effectively improve FAW resistance to insecticides by increasing the likelihood of Ach to enter the enzyme's active center for phenylalanine replaced by smaller valine under insecticide inhibition conditions. The bioassays and age-stage-specific life table analysis of FAW-SS and FAW-F290V populations revealed that F290V mutation effectively contributed to FAW resistance with a low fitness cost. This study provides a theoretical basis for future pest resistance management.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.