Ultra-strength and anti-freezing zwitterionic hydrogels with high ion conductivity: Effect of the hydrophobic monomer in hydrogels mechanical properties
Hatam Najafi Fath Dehghan , Amir Abdolmaleki , Mehdi Pourahmadi , Sepideh Hozori , Ehsan Gaeini , Seyed Younes Mousavi , Amir-Reza Arvaneh , Mehdi Sadat-Shojai
{"title":"Ultra-strength and anti-freezing zwitterionic hydrogels with high ion conductivity: Effect of the hydrophobic monomer in hydrogels mechanical properties","authors":"Hatam Najafi Fath Dehghan , Amir Abdolmaleki , Mehdi Pourahmadi , Sepideh Hozori , Ehsan Gaeini , Seyed Younes Mousavi , Amir-Reza Arvaneh , Mehdi Sadat-Shojai","doi":"10.1016/j.polymertesting.2024.108607","DOIUrl":null,"url":null,"abstract":"<div><div>Zwitterionic hydrogels have emerged as a promising option due to their remarkable ionic conductivity. However, these hydrogels often suffer from poor mechanical properties due to their super hydrophilicity. Herein, we propose the use of a rigid aryl imidazolium monomer (AIm) for crosslinking with poly(vinyl alcohol) (PVA) to create a unique zwitterion hydrogel. Chlorosulfonic acid acts as an agent to introduce anionic groups, facilitating the transfer of Zn<sup>2</sup>⁺ ions in zwitterionic hydrogel. We achieve extraordinary mechanical properties by incorporating an optimal amount of AIm into the PZW2 hydrogel (tensile stress 0.9 MPa and stretch 1400 %). Above all, the PZW2 hydrogel exhibits remarkable resistance to freezing, remaining unfrozen even at up to −80 °C. This anti-freezing property is attributed to the cation-dipole interactions and the presence of ZnCl<sub>2</sub>, effectively preventing water from freezing within the hydrogel structure. Furthermore, the PZW2 hydrogel demonstrates a high ionic conductivity of 4.34 S m<sup>−1</sup> at room temperature. This can be attributed to the presence of anionic and cationic charges within the PZW2 hydrogel, which facilitates the transfer of ions through a hopping mechanism. The PZW2 hydrogel demonstrates better performance compared to most antifreeze conductive hydrogels. At −20 °C, it achieves an impressive ionic conductivity of 2.73 S m<sup>−1</sup> and retains outstanding mechanical characteristics with a stretchability of 1000 %. Ultimately, the PZW2 hydrogel demonstrates a sensitive response performance with a gauge factor of 1.59, making it highly suitable for potential sensor applications.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002848","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Zwitterionic hydrogels have emerged as a promising option due to their remarkable ionic conductivity. However, these hydrogels often suffer from poor mechanical properties due to their super hydrophilicity. Herein, we propose the use of a rigid aryl imidazolium monomer (AIm) for crosslinking with poly(vinyl alcohol) (PVA) to create a unique zwitterion hydrogel. Chlorosulfonic acid acts as an agent to introduce anionic groups, facilitating the transfer of Zn2⁺ ions in zwitterionic hydrogel. We achieve extraordinary mechanical properties by incorporating an optimal amount of AIm into the PZW2 hydrogel (tensile stress 0.9 MPa and stretch 1400 %). Above all, the PZW2 hydrogel exhibits remarkable resistance to freezing, remaining unfrozen even at up to −80 °C. This anti-freezing property is attributed to the cation-dipole interactions and the presence of ZnCl2, effectively preventing water from freezing within the hydrogel structure. Furthermore, the PZW2 hydrogel demonstrates a high ionic conductivity of 4.34 S m−1 at room temperature. This can be attributed to the presence of anionic and cationic charges within the PZW2 hydrogel, which facilitates the transfer of ions through a hopping mechanism. The PZW2 hydrogel demonstrates better performance compared to most antifreeze conductive hydrogels. At −20 °C, it achieves an impressive ionic conductivity of 2.73 S m−1 and retains outstanding mechanical characteristics with a stretchability of 1000 %. Ultimately, the PZW2 hydrogel demonstrates a sensitive response performance with a gauge factor of 1.59, making it highly suitable for potential sensor applications.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.