Free volume theory of self-diffusion in zeolites: Molecular simulation and experiment

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED Microporous and Mesoporous Materials Pub Date : 2024-08-22 DOI:10.1016/j.micromeso.2024.113305
Wanda Kellouai , Patrick Judeinstein , Marie Plazanet , Jean-Marc Zanotti , Quentin Berrod , Martin Drobek , Anne Julbe , Benoit Coasne
{"title":"Free volume theory of self-diffusion in zeolites: Molecular simulation and experiment","authors":"Wanda Kellouai ,&nbsp;Patrick Judeinstein ,&nbsp;Marie Plazanet ,&nbsp;Jean-Marc Zanotti ,&nbsp;Quentin Berrod ,&nbsp;Martin Drobek ,&nbsp;Anne Julbe ,&nbsp;Benoit Coasne","doi":"10.1016/j.micromeso.2024.113305","DOIUrl":null,"url":null,"abstract":"<div><div>Neutron scattering and molecular dynamics are used to unravel the microscopic mechanisms that govern methane diffusion in MFI zeolite (silicalite-1). First, using neutron scattering for silicalite-1 loaded with different methane amounts, we analyze the experimental dynamic structure factor <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> in terms of molecular rotations and translations. While the rotational diffusion is found to be nearly independent of the zeolite loading, the translational diffusivity drastically decreases with the adsorbed amount. To gain insights into the diffusion mechanisms, trajectories obtained using molecular dynamics simulations are analyzed by determining mean square displacements <span><math><mrow><mo>〈</mo><mi>Δ</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>〉</mo></mrow></math></span> and incoherent scattering functions <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>. We also determine how anisotropy affects diffusion by considering independently the <span><math><mi>x</mi></math></span>, <span><math><mi>y</mi></math></span> and <span><math><mi>z</mi></math></span> directions. While the activation energy for diffusion is found to be weakly dependent on methane loading, the self-diffusivity decreases as the loading increases. Both the experimental and molecular simulation results suggest that steric repulsion between confined molecules – which increases as the loading increases – drastically affects diffusion. Using a free volume theory, we provide a simple formalism to predict consistently diffusion in the internal porous network of MFI zeolite. To demonstrate the applicability of this simple yet robust framework, we show that the free volume theory accurately captures diffusion in each direction of space but also when the size of the adsorbate molecule is arbitrarily increased.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"381 ","pages":"Article 113305"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003275","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Neutron scattering and molecular dynamics are used to unravel the microscopic mechanisms that govern methane diffusion in MFI zeolite (silicalite-1). First, using neutron scattering for silicalite-1 loaded with different methane amounts, we analyze the experimental dynamic structure factor S(q,ω) in terms of molecular rotations and translations. While the rotational diffusion is found to be nearly independent of the zeolite loading, the translational diffusivity drastically decreases with the adsorbed amount. To gain insights into the diffusion mechanisms, trajectories obtained using molecular dynamics simulations are analyzed by determining mean square displacements Δr2(t) and incoherent scattering functions F(q,t). We also determine how anisotropy affects diffusion by considering independently the x, y and z directions. While the activation energy for diffusion is found to be weakly dependent on methane loading, the self-diffusivity decreases as the loading increases. Both the experimental and molecular simulation results suggest that steric repulsion between confined molecules – which increases as the loading increases – drastically affects diffusion. Using a free volume theory, we provide a simple formalism to predict consistently diffusion in the internal porous network of MFI zeolite. To demonstrate the applicability of this simple yet robust framework, we show that the free volume theory accurately captures diffusion in each direction of space but also when the size of the adsorbate molecule is arbitrarily increased.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沸石中自扩散的自由体积理论:分子模拟和实验
我们利用中子散射和分子动力学揭示了甲烷在 MFI 沸石(硅铝酸盐-1)中扩散的微观机制。首先,我们利用中子散射对装入不同甲烷量的硅铝酸盐-1 进行了分子旋转和平移方面的实验动态结构因子 S(q,ω)分析。结果发现,旋转扩散几乎与沸石负载量无关,而平移扩散则随着吸附量的增加而急剧下降。为了深入了解扩散机制,我们通过确定均方位移〈Δr2(t)〉和非相干散射函数 F(q,t) 分析了分子动力学模拟获得的轨迹。我们还通过独立考虑 x、y 和 z 方向来确定各向异性如何影响扩散。虽然发现扩散的活化能与甲烷的负载量关系不大,但自扩散率会随着负载量的增加而降低。实验和分子模拟结果都表明,密闭分子之间的立体斥力(随着装载量的增加而增大)会极大地影响扩散。利用自由体积理论,我们提供了一个简单的形式主义来预测 MFI 沸石内部多孔网络中的持续扩散。为了证明这一简单而稳健的框架的适用性,我们展示了自由体积理论不仅能准确捕捉各个空间方向的扩散,而且能准确捕捉任意增大吸附剂分子大小时的扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
期刊最新文献
Editorial Board Effect of linker hybridization on the wetting of hydrophobic metal-organic frameworks Artificial intelligence -driven insights into bisphenol A removal using synthesized carbon nanotubes Catalytic COS formation on ion-exchanged LTA zeolites during adsorption Fabrication of LTA zeolite core and UiO-66 shell structures via surface zeta potential modulation and sequential seeded growth for zeolite/polymer composite membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1