Variations on the maximum density-size lines to climate and site factors for Larix spp. plantations in northeast China

IF 2.6 3区 环境科学与生态学 Q2 ECOLOGY Ecological Modelling Pub Date : 2024-10-16 DOI:10.1016/j.ecolmodel.2024.110913
Lingbo Dong , Guanmou Chen , Woodam Chung , Zhaogang Liu
{"title":"Variations on the maximum density-size lines to climate and site factors for Larix spp. plantations in northeast China","authors":"Lingbo Dong ,&nbsp;Guanmou Chen ,&nbsp;Woodam Chung ,&nbsp;Zhaogang Liu","doi":"10.1016/j.ecolmodel.2024.110913","DOIUrl":null,"url":null,"abstract":"<div><div>The maximum density-size line (MDSL) is a valuable tool in sustainable forest management, as it shows the relationship between site occupancy measures and mean tree size on a log-log scale. However, the responses of MDSLs to different climate and site variables still need to be clarified. Thus, this study aimed to assess the potential effects of various climate- and site-related factors on the slopes and intercepts of MDSLs for <em>Larix</em> spp. plantations in northeast China. The parameters of MDSLs were estimated using stochastic frontier regression (SFR) with three different error distribution assumptions, namely half-normal distribution (HN), exponential distribution (ED), and truncated-normal distribution (TN). Spatial distributions of maximum stand density index (<em>SDI<sub>max</sub></em>) were mapped under different climate scenarios (RCP 8.5, RCP 4.5, and RCP2.6). The results revealed that the slopes on MDSLs without covariates were significantly shallower than Reineke's slope (−1.605), ranging from −1.2485 to −1.2026. Of the 22 covariates considered, 13 variables on SFR-HN and SFR-TN and 16 variables on SFR-ED had significant influences on MDSLs. The optimal MDSL model, including mean annual temperature (MAT) and soil pH as covariates using a HN assumption, decreased the Akaike's Information Criterion (AIC) by approximately 7.76%. The results also indicated that increasing MAT significantly reduced the maximum stand density for stands with a natural logarithm of quadratic mean diameter [ln(QMD)] below 2.6, while consistent increases were observed over the entire ln(QMD) range for soil pH. Moreover, the mean <em>SDI<sub>max</sub></em> within the whole region increased significantly from 15.04% under RCP4.5 to 27.78% under RCP8.5. These findings emphasize the significant influences of climate and site conditions on the MDSL, thereby calibrating on traditional density management strategies may contribute significantly on carbon sequestration capacity of forests in the face of climate change.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380024003016","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The maximum density-size line (MDSL) is a valuable tool in sustainable forest management, as it shows the relationship between site occupancy measures and mean tree size on a log-log scale. However, the responses of MDSLs to different climate and site variables still need to be clarified. Thus, this study aimed to assess the potential effects of various climate- and site-related factors on the slopes and intercepts of MDSLs for Larix spp. plantations in northeast China. The parameters of MDSLs were estimated using stochastic frontier regression (SFR) with three different error distribution assumptions, namely half-normal distribution (HN), exponential distribution (ED), and truncated-normal distribution (TN). Spatial distributions of maximum stand density index (SDImax) were mapped under different climate scenarios (RCP 8.5, RCP 4.5, and RCP2.6). The results revealed that the slopes on MDSLs without covariates were significantly shallower than Reineke's slope (−1.605), ranging from −1.2485 to −1.2026. Of the 22 covariates considered, 13 variables on SFR-HN and SFR-TN and 16 variables on SFR-ED had significant influences on MDSLs. The optimal MDSL model, including mean annual temperature (MAT) and soil pH as covariates using a HN assumption, decreased the Akaike's Information Criterion (AIC) by approximately 7.76%. The results also indicated that increasing MAT significantly reduced the maximum stand density for stands with a natural logarithm of quadratic mean diameter [ln(QMD)] below 2.6, while consistent increases were observed over the entire ln(QMD) range for soil pH. Moreover, the mean SDImax within the whole region increased significantly from 15.04% under RCP4.5 to 27.78% under RCP8.5. These findings emphasize the significant influences of climate and site conditions on the MDSL, thereby calibrating on traditional density management strategies may contribute significantly on carbon sequestration capacity of forests in the face of climate change.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国东北地区最大密度-大小线与气候和地点因素的关系
最大密度-大小线(MDSL)是可持续森林管理的重要工具,因为它以对数-对数尺度显示了林地占有率测量值与平均树木大小之间的关系。然而,MDSL 对不同气候和地点变量的响应仍有待澄清。因此,本研究旨在评估与气候和地点相关的各种因素对中国东北地区杉木人工林 MDSLs 的斜率和截距的潜在影响。采用随机前沿回归法(SFR)估算了MDSL的参数,并假设了三种不同的误差分布,即半正态分布(HN)、指数分布(ED)和截断正态分布(TN)。绘制了不同气候情景(RCP 8.5、RCP 4.5 和 RCP2.6)下最大林分密度指数(SDImax)的空间分布图。结果表明,不考虑协变量的 MDSL 的斜率明显浅于 Reineke 的斜率(-1.605),范围在-1.2485 至-1.2026 之间。在考虑的 22 个协变量中,SFR-HN 和 SFR-TN 的 13 个变量以及 SFR-ED 的 16 个变量对 MDSL 有显著影响。采用 HN 假设,将年平均温度(MAT)和土壤 pH 值作为协变量的最佳 MDSL 模型,使 Akaike 信息准则(AIC)降低了约 7.76%。结果还表明,对于二次平均直径自然对数[ln(QMD)]低于 2.6 的林分,增加 MAT 会显著降低最大林分密度,而在整个 ln(QMD)范围内,土壤 pH 值会持续增加。此外,整个区域的平均 SDImax 从 RCP4.5 下的 15.04% 显著增加到 RCP8.5 下的 27.78%。这些发现强调了气候和地点条件对MDSL的重要影响,因此,校准传统的密度管理策略可能对气候变化下的森林碳固存能力做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Modelling
Ecological Modelling 环境科学-生态学
CiteScore
5.60
自引率
6.50%
发文量
259
审稿时长
69 days
期刊介绍: The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).
期刊最新文献
Editorial Board Uncertainty analysis of hydrological parameters of the APEXgraze model for grazing activities prior3D: An R package for three-dimensional conservation prioritization Effects of temperature on asexual reproduction and jellyfish booms of Aurelia aurita: Insights from mathematical modeling Interactive effects of climate change and human mobility on dengue transmission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1