{"title":"Variations on the maximum density-size lines to climate and site factors for Larix spp. plantations in northeast China","authors":"Lingbo Dong , Guanmou Chen , Woodam Chung , Zhaogang Liu","doi":"10.1016/j.ecolmodel.2024.110913","DOIUrl":null,"url":null,"abstract":"<div><div>The maximum density-size line (MDSL) is a valuable tool in sustainable forest management, as it shows the relationship between site occupancy measures and mean tree size on a log-log scale. However, the responses of MDSLs to different climate and site variables still need to be clarified. Thus, this study aimed to assess the potential effects of various climate- and site-related factors on the slopes and intercepts of MDSLs for <em>Larix</em> spp. plantations in northeast China. The parameters of MDSLs were estimated using stochastic frontier regression (SFR) with three different error distribution assumptions, namely half-normal distribution (HN), exponential distribution (ED), and truncated-normal distribution (TN). Spatial distributions of maximum stand density index (<em>SDI<sub>max</sub></em>) were mapped under different climate scenarios (RCP 8.5, RCP 4.5, and RCP2.6). The results revealed that the slopes on MDSLs without covariates were significantly shallower than Reineke's slope (−1.605), ranging from −1.2485 to −1.2026. Of the 22 covariates considered, 13 variables on SFR-HN and SFR-TN and 16 variables on SFR-ED had significant influences on MDSLs. The optimal MDSL model, including mean annual temperature (MAT) and soil pH as covariates using a HN assumption, decreased the Akaike's Information Criterion (AIC) by approximately 7.76%. The results also indicated that increasing MAT significantly reduced the maximum stand density for stands with a natural logarithm of quadratic mean diameter [ln(QMD)] below 2.6, while consistent increases were observed over the entire ln(QMD) range for soil pH. Moreover, the mean <em>SDI<sub>max</sub></em> within the whole region increased significantly from 15.04% under RCP4.5 to 27.78% under RCP8.5. These findings emphasize the significant influences of climate and site conditions on the MDSL, thereby calibrating on traditional density management strategies may contribute significantly on carbon sequestration capacity of forests in the face of climate change.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380024003016","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The maximum density-size line (MDSL) is a valuable tool in sustainable forest management, as it shows the relationship between site occupancy measures and mean tree size on a log-log scale. However, the responses of MDSLs to different climate and site variables still need to be clarified. Thus, this study aimed to assess the potential effects of various climate- and site-related factors on the slopes and intercepts of MDSLs for Larix spp. plantations in northeast China. The parameters of MDSLs were estimated using stochastic frontier regression (SFR) with three different error distribution assumptions, namely half-normal distribution (HN), exponential distribution (ED), and truncated-normal distribution (TN). Spatial distributions of maximum stand density index (SDImax) were mapped under different climate scenarios (RCP 8.5, RCP 4.5, and RCP2.6). The results revealed that the slopes on MDSLs without covariates were significantly shallower than Reineke's slope (−1.605), ranging from −1.2485 to −1.2026. Of the 22 covariates considered, 13 variables on SFR-HN and SFR-TN and 16 variables on SFR-ED had significant influences on MDSLs. The optimal MDSL model, including mean annual temperature (MAT) and soil pH as covariates using a HN assumption, decreased the Akaike's Information Criterion (AIC) by approximately 7.76%. The results also indicated that increasing MAT significantly reduced the maximum stand density for stands with a natural logarithm of quadratic mean diameter [ln(QMD)] below 2.6, while consistent increases were observed over the entire ln(QMD) range for soil pH. Moreover, the mean SDImax within the whole region increased significantly from 15.04% under RCP4.5 to 27.78% under RCP8.5. These findings emphasize the significant influences of climate and site conditions on the MDSL, thereby calibrating on traditional density management strategies may contribute significantly on carbon sequestration capacity of forests in the face of climate change.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).