Structural, optical, photocatalytic and thermal behaviour of (Nb, Ta) co-doped WO3 nanoparticles and its application in photocatalytic degradation of MG and RhB dyes
{"title":"Structural, optical, photocatalytic and thermal behaviour of (Nb, Ta) co-doped WO3 nanoparticles and its application in photocatalytic degradation of MG and RhB dyes","authors":"Manjeet Pawar , Poonam Nain , Saruchi Rani , Bharti Sharma , Sushil Kumar , M.A. Majeed Khan","doi":"10.1016/j.optmat.2024.116277","DOIUrl":null,"url":null,"abstract":"<div><div>In this communication, eco-friendly, cost effective and facile hydrothermal route was adopted to synthesize pure WO<sub>3</sub>, Nb-doped WO<sub>3</sub> and (Nb, Ta) co-doped WO<sub>3</sub> nanoparticles. Phase, lattice constants, crystallite size and crystallinity have been evaluated through X-ray diffraction. The insertion of Nb and Ta ions into WO<sub>3</sub> nanoparticles was confirmed by XPS, FTIR and EDS studies. HRTEM and SAED micrographs exhibited highly nanocrystalline nature of samples. UV–visible studies was carried out to analyse nature of band gap, band gap energy, extinction coefficient, refractive index, Urbach energy and optical conductivity of prepared samples. Optical band gap was narrowed from 2.94 to 2.49 eV and Urbach energy was extended from 0.08 to 0.35 eV through co-doping of (Nb, Ta) ions into WO<sub>3</sub> NPs. Reduction in PL intensity revealed that electron-hole pair recombination rate was decreased with co-doping of (Nb, Ta) ions. The photo-degradation efficiency of (Nb 5 %, Ta 5 %) co-doped WO<sub>3</sub> nanophotocatalysts was 93.12 % against MG and 90.11 % against RhB dyes. The rate constant was found to be increased from 0.0107 to 0.0203 min<sup>−1</sup> for MG and 0.0086 to 0.0174 min<sup>−1</sup> for RhB. Thermal results exhibited the weight loss in three phase degradation processes, and thermal stability. The results showed that (Nb 5 %, Ta 5 %) co-doped WO<sub>3</sub> NPs is a potential candidate for practical applications in environmental remediation (organic dyes degradation).</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116277"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724014605","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this communication, eco-friendly, cost effective and facile hydrothermal route was adopted to synthesize pure WO3, Nb-doped WO3 and (Nb, Ta) co-doped WO3 nanoparticles. Phase, lattice constants, crystallite size and crystallinity have been evaluated through X-ray diffraction. The insertion of Nb and Ta ions into WO3 nanoparticles was confirmed by XPS, FTIR and EDS studies. HRTEM and SAED micrographs exhibited highly nanocrystalline nature of samples. UV–visible studies was carried out to analyse nature of band gap, band gap energy, extinction coefficient, refractive index, Urbach energy and optical conductivity of prepared samples. Optical band gap was narrowed from 2.94 to 2.49 eV and Urbach energy was extended from 0.08 to 0.35 eV through co-doping of (Nb, Ta) ions into WO3 NPs. Reduction in PL intensity revealed that electron-hole pair recombination rate was decreased with co-doping of (Nb, Ta) ions. The photo-degradation efficiency of (Nb 5 %, Ta 5 %) co-doped WO3 nanophotocatalysts was 93.12 % against MG and 90.11 % against RhB dyes. The rate constant was found to be increased from 0.0107 to 0.0203 min−1 for MG and 0.0086 to 0.0174 min−1 for RhB. Thermal results exhibited the weight loss in three phase degradation processes, and thermal stability. The results showed that (Nb 5 %, Ta 5 %) co-doped WO3 NPs is a potential candidate for practical applications in environmental remediation (organic dyes degradation).
期刊介绍:
Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials.
OPTICAL MATERIALS focuses on:
• Optical Properties of Material Systems;
• The Materials Aspects of Optical Phenomena;
• The Materials Aspects of Devices and Applications.
Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.