{"title":"Novel and reusable magnetic MOF nanocomposite coupled ionic liquid-promoted efficient chemical fixation of CO2 into α-alkylidene cyclic carbonates","authors":"Yu Lin Hu, Yan Hui Lei, Yu Tao Zhang","doi":"10.1016/j.jscs.2024.101950","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dioxide as a C1 building block to synthesize α-alkylidene cyclic carbonates is an environmental and sustainable approach. In this work, we designed and synthesized a type of multifunctional magnetic MOF nanocomposite catalysts, which could realize the carboxylic cyclization of CO<sub>2</sub> and propargylic alcohols into α-alkylidene cyclic carbonates under solvent-free conditions. Among all the prepared nanocomposites, the MnFe<sub>2</sub>O<sub>4</sub>@SiO<sub>2</sub>@Cu-MOF nanocomposite is the best in catalytic activity combined with the tetrabutylphosphonium acetate ([Bu<sub>4</sub>P]OAc) ionic liquid cocatalyst. The catalytic system MnFe<sub>2</sub>O<sub>4</sub>@SiO<sub>2</sub>@Cu-MOF/[Bu<sub>4</sub>P]OAc displayed excellent performance in catalyzing the carboxylic cyclization of CO<sub>2</sub> and different propargylic alcohols, and a series of α-alkylidene cyclic carbonates were obtained in high to excellent yields (88 ∼ 98 %) under mild reaction conditions (0.2 MPa, 35 °C). In addition, the two-component catalytic system had high stability and reusability, and can be easily separated and reused up to six consecutive cycles without considerable decrease in catalytic activity. Moreover, using the ionic liquid [Bu<sub>4</sub>P]OAc as the cocatalyst, the nanocomposite had good substrate adaptability for the catalytic carboxylic cyclization, which opens interesting prospects for the development of new magnetic MOF nanocomposites as efficient heterogeneous catalysts for the chemical transformation of CO<sub>2</sub> into value-added chemicals.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101950"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324001455","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon dioxide as a C1 building block to synthesize α-alkylidene cyclic carbonates is an environmental and sustainable approach. In this work, we designed and synthesized a type of multifunctional magnetic MOF nanocomposite catalysts, which could realize the carboxylic cyclization of CO2 and propargylic alcohols into α-alkylidene cyclic carbonates under solvent-free conditions. Among all the prepared nanocomposites, the MnFe2O4@SiO2@Cu-MOF nanocomposite is the best in catalytic activity combined with the tetrabutylphosphonium acetate ([Bu4P]OAc) ionic liquid cocatalyst. The catalytic system MnFe2O4@SiO2@Cu-MOF/[Bu4P]OAc displayed excellent performance in catalyzing the carboxylic cyclization of CO2 and different propargylic alcohols, and a series of α-alkylidene cyclic carbonates were obtained in high to excellent yields (88 ∼ 98 %) under mild reaction conditions (0.2 MPa, 35 °C). In addition, the two-component catalytic system had high stability and reusability, and can be easily separated and reused up to six consecutive cycles without considerable decrease in catalytic activity. Moreover, using the ionic liquid [Bu4P]OAc as the cocatalyst, the nanocomposite had good substrate adaptability for the catalytic carboxylic cyclization, which opens interesting prospects for the development of new magnetic MOF nanocomposites as efficient heterogeneous catalysts for the chemical transformation of CO2 into value-added chemicals.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.