Karl Heilbron , Julia Kraft , Alice Braun , Swapnil Awasthi , Georgia Panagiotaropoulou , Marijn Schipper , Nathaniel Bell , Danielle Posthuma , Antonio Pardiñas , Stephan Ripke
{"title":"IDENTIFYING DRUG TARGETS FOR SCHIZOPHRENIA THROUGH GENE PRIORITIZATION","authors":"Karl Heilbron , Julia Kraft , Alice Braun , Swapnil Awasthi , Georgia Panagiotaropoulou , Marijn Schipper , Nathaniel Bell , Danielle Posthuma , Antonio Pardiñas , Stephan Ripke","doi":"10.1016/j.euroneuro.2024.08.036","DOIUrl":null,"url":null,"abstract":"<div><div>The latest schizophrenia GWAS meta-analysis found 287 loci that reached genome-wide statistical significance (67,390 cases and 94,015 controls). In these loci, 120 genes were prioritized using fine-mapping, summary-based Mendelian Randomization (SMR), and enhancer-promoter interaction (via Hi-C). However, these methods only use information within a given locus, ignoring information from the rest of the genome. Combining locus-based approaches with tools that incorporate genome-wide information such as the Polygenic Priority Score (PoPS) have been shown to improve gene prioritization precision. To more accurately characterize genes that play a role in schizophrenia etiology, we prioritized 62 genes based on their distance to GWAS signals, PoPS, fine-mapped coding variants, and ultra-rare coding variant burden tests. We prioritized DRD2, the target of most approved antipsychotics, which was not highlighted by previous efforts. In addition, we prioritized 9 genes that are targeted by approved or investigational drugs and may therefore present drug repurposing opportunities. These included drugs targeting calcium channels (CACNA1C and CACNB2), glutamatergic receptors (GRIN2A and GRM3), and GABAB receptor (GABBR2). We highlighted 3 additional genes (PDE4B, VRK2, and PLCL2) in loci that are shared with a recent addiction GWAS. While it is challenging to assess psychotic symptoms in rodents, high-quality rodent addiction models exist for a wide range of substances. Modulation of these genes could be tested in rodent addiction models and, if successful, may warrant further testing in human clinical trials of addiction and/or schizophrenia. Adding to previous gene prioritization efforts, we hope that our list of prioritized genes will ultimately facilitate the development of new medicines for people living with schizophrenia.</div></div>","PeriodicalId":12049,"journal":{"name":"European Neuropsychopharmacology","volume":"87 ","pages":"Page 12"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Neuropsychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924977X24002359","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The latest schizophrenia GWAS meta-analysis found 287 loci that reached genome-wide statistical significance (67,390 cases and 94,015 controls). In these loci, 120 genes were prioritized using fine-mapping, summary-based Mendelian Randomization (SMR), and enhancer-promoter interaction (via Hi-C). However, these methods only use information within a given locus, ignoring information from the rest of the genome. Combining locus-based approaches with tools that incorporate genome-wide information such as the Polygenic Priority Score (PoPS) have been shown to improve gene prioritization precision. To more accurately characterize genes that play a role in schizophrenia etiology, we prioritized 62 genes based on their distance to GWAS signals, PoPS, fine-mapped coding variants, and ultra-rare coding variant burden tests. We prioritized DRD2, the target of most approved antipsychotics, which was not highlighted by previous efforts. In addition, we prioritized 9 genes that are targeted by approved or investigational drugs and may therefore present drug repurposing opportunities. These included drugs targeting calcium channels (CACNA1C and CACNB2), glutamatergic receptors (GRIN2A and GRM3), and GABAB receptor (GABBR2). We highlighted 3 additional genes (PDE4B, VRK2, and PLCL2) in loci that are shared with a recent addiction GWAS. While it is challenging to assess psychotic symptoms in rodents, high-quality rodent addiction models exist for a wide range of substances. Modulation of these genes could be tested in rodent addiction models and, if successful, may warrant further testing in human clinical trials of addiction and/or schizophrenia. Adding to previous gene prioritization efforts, we hope that our list of prioritized genes will ultimately facilitate the development of new medicines for people living with schizophrenia.
期刊介绍:
European Neuropsychopharmacology is the official publication of the European College of Neuropsychopharmacology (ECNP). In accordance with the mission of the College, the journal focuses on clinical and basic science contributions that advance our understanding of brain function and human behaviour and enable translation into improved treatments and enhanced public health impact in psychiatry. Recent years have been characterized by exciting advances in basic knowledge and available experimental techniques in neuroscience and genomics. However, clinical translation of these findings has not been as rapid. The journal aims to narrow this gap by promoting findings that are expected to have a major impact on both our understanding of the biological bases of mental disorders and the development and improvement of treatments, ideally paving the way for prevention and recovery.