Jack Fu , F. Kyle Satterstrom , Kirsty McWalter , Harrison Brand , Robert Kueffner , David Cutler , Kaitlin Samocha , Elise Robinson , Joseph Buxbaum , Bernie Devlin , Kathryn Roeder , Paul Kruszka , Stephan Sanders , Mark Daly , Michael Talkowski
{"title":"THE ALLELIC ARCHITECTURE OF RARE VARIATION IN AUTISM AND OTHER NEURODEVELOPMENTAL CONDITIONS","authors":"Jack Fu , F. Kyle Satterstrom , Kirsty McWalter , Harrison Brand , Robert Kueffner , David Cutler , Kaitlin Samocha , Elise Robinson , Joseph Buxbaum , Bernie Devlin , Kathryn Roeder , Paul Kruszka , Stephan Sanders , Mark Daly , Michael Talkowski","doi":"10.1016/j.euroneuro.2024.08.046","DOIUrl":null,"url":null,"abstract":"<div><div>The fields of autism and neurodevelopmental disorder (NDD) genetics are rapidly advancing. Catalyzed by the power of large cohorts and integration of all classes of de novo and inherited protein-coding variation, dozens of genes have emerged to harbor variants that confer high relative risk for autism, and hundreds of genes have been associated with NDDs more broadly. Through examination of protein-truncating variants (PTVs), predicted damaging missense variation, and copy number variants (CNVs), our prior analyses have begun to map the allelic diversity of perturbations within 72 autism-associated genes and 373 genes associated with NDDs, finding intriguing evidence of genes with significantly higher mutation rates and differences in the distribution of clinical phenotypes in autism compared to NDD (Fu et al., 2022; Satterstrom et al., 2020). Despite this progress, cohort sizes remain insufficient for disentangling the shared and distinct genetic architectures of autism, NDDs, and other neuropsychiatric conditions, as well as associating genes with more subtle impacts on neurodevelopment.</div><div>To advance these boundaries, we present the largest to-date study of rare coding variants, consisting of 62,013 autistic individuals, including 38,088 probands and 9,567 unaffected siblings from complete trio and quartet families, respectively, and 23,925 additional autism cases without parental information contrasted against 26,931 controls. By aggregating across the Autism Sequencing Consortium (ASC), the Simons Simplex Collection (SSC), the Simons Foundation Powering Autism Research (SPARK), and individuals from a leading diagnostic laboratory (GeneDx), this dataset totals almost 200,000 individuals, nearly a three-fold increase over prior studies. When we stratified the clinically-referred GeneDx autistic probands by co-occurring DD/ID status, we found synonymous, missense, and PTV de novo mutation rates in autism probands without DD/ID from GeneDx that were nearly identical to individuals ascertained for a diagnosis of autism in the ASC, SSC, and SPARK research studies (0.296 vs 0.294, 0.767 vs 0.763, and 0.141 vs 0.145 respectively), while GeneDx autism probands with DD/ID exhibited mutation rates similar to those observed in previous research studies of DD.</div><div>Further analyses of these data solidified previous observations of significant enrichment of de novo PTVs among autism probands of 3x compared to siblings among the genes most intolerant to PTVs in the human genome (i.e., lowest decile of LOEUF from gnomAD). We have also incorporated Alpha Missense (AM) pathogenicity estimates to complement our prior MPC scores for predicting damaging missense variation and identifying de novo missense variants acting with effect sizes comparable to de novo PTVs in constrained genes, with analysis of regional missense constraint within genes ongoing. We further leveraged the TADA Bayesian statistical method to jointly model these data in a single unified framework, leveraging genetic information across rare PTVs, damaging missense variants, and CNVs. This approach discovered hundreds of genes associated with autism, where we observe a steadily increasing contribution of variant classes other than de novo PTVs in newly associated genes. Analyses are ongoing to understand the gene networks, developmental timing, and biological functions by which these genes exert their influence on phenotypic manifestations of autism and related neuropsychiatric disorders.</div></div>","PeriodicalId":12049,"journal":{"name":"European Neuropsychopharmacology","volume":"87 ","pages":"Pages 16-17"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Neuropsychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924977X24002451","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The fields of autism and neurodevelopmental disorder (NDD) genetics are rapidly advancing. Catalyzed by the power of large cohorts and integration of all classes of de novo and inherited protein-coding variation, dozens of genes have emerged to harbor variants that confer high relative risk for autism, and hundreds of genes have been associated with NDDs more broadly. Through examination of protein-truncating variants (PTVs), predicted damaging missense variation, and copy number variants (CNVs), our prior analyses have begun to map the allelic diversity of perturbations within 72 autism-associated genes and 373 genes associated with NDDs, finding intriguing evidence of genes with significantly higher mutation rates and differences in the distribution of clinical phenotypes in autism compared to NDD (Fu et al., 2022; Satterstrom et al., 2020). Despite this progress, cohort sizes remain insufficient for disentangling the shared and distinct genetic architectures of autism, NDDs, and other neuropsychiatric conditions, as well as associating genes with more subtle impacts on neurodevelopment.
To advance these boundaries, we present the largest to-date study of rare coding variants, consisting of 62,013 autistic individuals, including 38,088 probands and 9,567 unaffected siblings from complete trio and quartet families, respectively, and 23,925 additional autism cases without parental information contrasted against 26,931 controls. By aggregating across the Autism Sequencing Consortium (ASC), the Simons Simplex Collection (SSC), the Simons Foundation Powering Autism Research (SPARK), and individuals from a leading diagnostic laboratory (GeneDx), this dataset totals almost 200,000 individuals, nearly a three-fold increase over prior studies. When we stratified the clinically-referred GeneDx autistic probands by co-occurring DD/ID status, we found synonymous, missense, and PTV de novo mutation rates in autism probands without DD/ID from GeneDx that were nearly identical to individuals ascertained for a diagnosis of autism in the ASC, SSC, and SPARK research studies (0.296 vs 0.294, 0.767 vs 0.763, and 0.141 vs 0.145 respectively), while GeneDx autism probands with DD/ID exhibited mutation rates similar to those observed in previous research studies of DD.
Further analyses of these data solidified previous observations of significant enrichment of de novo PTVs among autism probands of 3x compared to siblings among the genes most intolerant to PTVs in the human genome (i.e., lowest decile of LOEUF from gnomAD). We have also incorporated Alpha Missense (AM) pathogenicity estimates to complement our prior MPC scores for predicting damaging missense variation and identifying de novo missense variants acting with effect sizes comparable to de novo PTVs in constrained genes, with analysis of regional missense constraint within genes ongoing. We further leveraged the TADA Bayesian statistical method to jointly model these data in a single unified framework, leveraging genetic information across rare PTVs, damaging missense variants, and CNVs. This approach discovered hundreds of genes associated with autism, where we observe a steadily increasing contribution of variant classes other than de novo PTVs in newly associated genes. Analyses are ongoing to understand the gene networks, developmental timing, and biological functions by which these genes exert their influence on phenotypic manifestations of autism and related neuropsychiatric disorders.
期刊介绍:
European Neuropsychopharmacology is the official publication of the European College of Neuropsychopharmacology (ECNP). In accordance with the mission of the College, the journal focuses on clinical and basic science contributions that advance our understanding of brain function and human behaviour and enable translation into improved treatments and enhanced public health impact in psychiatry. Recent years have been characterized by exciting advances in basic knowledge and available experimental techniques in neuroscience and genomics. However, clinical translation of these findings has not been as rapid. The journal aims to narrow this gap by promoting findings that are expected to have a major impact on both our understanding of the biological bases of mental disorders and the development and improvement of treatments, ideally paving the way for prevention and recovery.