{"title":"A novel synchrosqueezing transform associated with linear canonical transform","authors":"Hongxia Miao","doi":"10.1016/j.sigpro.2024.109733","DOIUrl":null,"url":null,"abstract":"<div><div>Synchrosqueezing transforms have aroused great attention for its ability in time–frequency energy rearranging and signal reconstruction, which are post-processing techniques of the time–frequency distribution. However, the time–frequency distributions, such as short-time Fourier transform and short-time fractional Fourier transform, cannot change the shape of the time–frequency distribution. The linear canonical transform (LCT) can simultaneously rotate and scale the time–frequency distribution, which enlarges the distance between different signal components with proper parameters. In this study, a convolution-type short-time LCT is proposed to present the time–frequency distribution of a signal, from which the signal reconstruction formula is given. Its resolutions in time and LCT domains are demonstrated, which helps to select suitable window functions. A fast implementation algorithm for the short-time LCT is provided. Further, the synchrosqueezing LCT (SLCT) transform is designed by performing synchrosqueezing technique on the short-time LCT. The SLCT inherits many properties of the LCT, and the signal reconstruction formula is obtained from the SLCT. Adaptive selections of the parameter matrix of LCT and the length of the window function are introduced, thereby enabling proper compress direction and resolution of the signal. Finally, numerical experiments are presented to verify the efficiency of the SLCT.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109733"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003530","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Synchrosqueezing transforms have aroused great attention for its ability in time–frequency energy rearranging and signal reconstruction, which are post-processing techniques of the time–frequency distribution. However, the time–frequency distributions, such as short-time Fourier transform and short-time fractional Fourier transform, cannot change the shape of the time–frequency distribution. The linear canonical transform (LCT) can simultaneously rotate and scale the time–frequency distribution, which enlarges the distance between different signal components with proper parameters. In this study, a convolution-type short-time LCT is proposed to present the time–frequency distribution of a signal, from which the signal reconstruction formula is given. Its resolutions in time and LCT domains are demonstrated, which helps to select suitable window functions. A fast implementation algorithm for the short-time LCT is provided. Further, the synchrosqueezing LCT (SLCT) transform is designed by performing synchrosqueezing technique on the short-time LCT. The SLCT inherits many properties of the LCT, and the signal reconstruction formula is obtained from the SLCT. Adaptive selections of the parameter matrix of LCT and the length of the window function are introduced, thereby enabling proper compress direction and resolution of the signal. Finally, numerical experiments are presented to verify the efficiency of the SLCT.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.