Tianyan Jiang , Feifan Wu , Hao Wu , Haonan Xie , Biao Deng , Maoqiang Bi
{"title":"Adsorption and gas sensing properties of CH4, C2H2, and C2H4 dissolved gases in transformer oil on Pdn(n = 1–4)-doped WTe2 monolayers: A DFT study","authors":"Tianyan Jiang , Feifan Wu , Hao Wu , Haonan Xie , Biao Deng , Maoqiang Bi","doi":"10.1016/j.comptc.2024.114895","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the potential of palladium (Pd) and its clusters-doped tungsten ditelluride (WTe<sub>2</sub>) monolayer materials for the detection of dissolved gases (such as CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, and C<sub>2</sub>H<sub>4</sub>) in transformer oil. Density functional theory (DFT) was used to study the effect of Pd<sub>n</sub> (n = 1–4) doping on the gas sensing and adsorption properties of WTe<sub>2</sub> monolayer materials. The results show that Pd<sub>n</sub> doping can significantly improve the adsorption capacity and gas sensing performance of WTe<sub>2</sub> to these gas molecules, especially showing excellent performance in detecting acetylene and ethylene. Studies have shown that Pd<sub>n</sub> doping improves the electrical conductivity of WTe<sub>2</sub>, making it more suitable for the development of gas sensors. Through the calculation of state density, molecular orbital and charge density difference, the adsorption mechanism of Pd<sub>n</sub>-doped WTe<sub>2</sub> monolayer to different gas molecules was revealed. This study provides a theoretical basis and guidance for the development of efficient sensor materials for fault gas detection in transformer oil. In conclusion, the proposed Pd-doped WTe<sub>2</sub> monolayer demonstrates promising potential for detecting dissolved gases in transformer oil. Future work will focus on experimental validation and further optimization of the material’s sensitivity and selectivity towards other gas species.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1241 ","pages":"Article 114895"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24004341","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the potential of palladium (Pd) and its clusters-doped tungsten ditelluride (WTe2) monolayer materials for the detection of dissolved gases (such as CH4, C2H2, and C2H4) in transformer oil. Density functional theory (DFT) was used to study the effect of Pdn (n = 1–4) doping on the gas sensing and adsorption properties of WTe2 monolayer materials. The results show that Pdn doping can significantly improve the adsorption capacity and gas sensing performance of WTe2 to these gas molecules, especially showing excellent performance in detecting acetylene and ethylene. Studies have shown that Pdn doping improves the electrical conductivity of WTe2, making it more suitable for the development of gas sensors. Through the calculation of state density, molecular orbital and charge density difference, the adsorption mechanism of Pdn-doped WTe2 monolayer to different gas molecules was revealed. This study provides a theoretical basis and guidance for the development of efficient sensor materials for fault gas detection in transformer oil. In conclusion, the proposed Pd-doped WTe2 monolayer demonstrates promising potential for detecting dissolved gases in transformer oil. Future work will focus on experimental validation and further optimization of the material’s sensitivity and selectivity towards other gas species.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.