{"title":"Niche divergence mechanisms of closely related hybridising bird species. Modeling approach based on remote sensing data of forest habitats","authors":"Jakub Z. Kosicki","doi":"10.1016/j.ecocom.2024.101102","DOIUrl":null,"url":null,"abstract":"<div><div>Describing mechanisms that ensure stable co-occurrence of sympatric species is fundamental to understanding the complexity of ecological community dynamics. In this study, the Pied flycatcher and the Collared flycatcher were used as model species for the analysis of co-occurrence patterns of closely related hybridising species that inhabit overlapping forest habitats. I hypothesise that spatial niche partitioning between species emerges as a vital adaptive response to interspecific competition and manifests itself in significant shifts in habitat preferences in syntopic areas but not in the allotopic ones. The study leverages a comprehensive dataset that includes species density in 372 randomly selected 1 km² grid cells across the territory of Poland. The analysis of habitat preferences was performed with linear mixed-effect modeling, whereas a contrast analysis was used to investigate changes in habitat preferences resulting from the presence of a competitor. The findings indicate that both species modify their habitat preferences when transitioning between syntopic and allotopic sites. Remarkably, in regions without competitors, such shifts are significantly less pronounced, as demonstrated by the Pied flycatcher that prefers the same habitats both in allopatric regions and allotopic sites. When these results are compared with other studies on closely related hybridising and non-hybridising species, it turns out that what influences the degree and number of niches subjected to competition is the time that passes from species divergence. This study highlights the imperative need to incorporate co-occurrence parameters of closely related species into niche and species distribution models to enhance their ecological realism.</div></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"60 ","pages":"Article 101102"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X24000308","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Describing mechanisms that ensure stable co-occurrence of sympatric species is fundamental to understanding the complexity of ecological community dynamics. In this study, the Pied flycatcher and the Collared flycatcher were used as model species for the analysis of co-occurrence patterns of closely related hybridising species that inhabit overlapping forest habitats. I hypothesise that spatial niche partitioning between species emerges as a vital adaptive response to interspecific competition and manifests itself in significant shifts in habitat preferences in syntopic areas but not in the allotopic ones. The study leverages a comprehensive dataset that includes species density in 372 randomly selected 1 km² grid cells across the territory of Poland. The analysis of habitat preferences was performed with linear mixed-effect modeling, whereas a contrast analysis was used to investigate changes in habitat preferences resulting from the presence of a competitor. The findings indicate that both species modify their habitat preferences when transitioning between syntopic and allotopic sites. Remarkably, in regions without competitors, such shifts are significantly less pronounced, as demonstrated by the Pied flycatcher that prefers the same habitats both in allopatric regions and allotopic sites. When these results are compared with other studies on closely related hybridising and non-hybridising species, it turns out that what influences the degree and number of niches subjected to competition is the time that passes from species divergence. This study highlights the imperative need to incorporate co-occurrence parameters of closely related species into niche and species distribution models to enhance their ecological realism.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity