Imtisal Zahid , Muhammad Hamza Nazir , Muhammad Asad Javed
{"title":"Extraction of bioactive components from date palm waste, various extraction processes and their applications: A review","authors":"Imtisal Zahid , Muhammad Hamza Nazir , Muhammad Asad Javed","doi":"10.1016/j.biombioe.2024.107433","DOIUrl":null,"url":null,"abstract":"<div><div>Dates are vital sources of nutrients and bioactive components which are widely consumed throughout the world. Agro-industrial waste, such as date palm waste, has been recognized as a potential candidate of bioactive chemicals and essential oils for utilization in food, medicine, and cosmetics. Date fruit and seed are well-known for their nutritional worth, which includes high sugar, vitamins, and mineral content that includes potassium and magnesium. Presence of phenolic compounds diverges the attention of researchers towards efficient extraction processes. Various traditional e.g., soxhlet, maceration, infusion, and digesting and advanced extraction techniques, i.e., pressurised fluid extraction (PFE), enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), and supercritical CO<sub>2</sub> extraction (SC-CO<sub>2</sub>) have been discussed briefly to extract bioactive components for instance flavonoids, tocopherols, tannins, carotenoids, tocotrienols and hydroxybenzoic acid from date palm fruit, seed, and leaves. The findings reveal that the higher total phenolic content in a shorter time can be obtained by combining ultrasonic with PLE or SFE extraction techniques. These bioactive components can be used in the food and pharmaceutical industries for pre-treatment of certain ailments. Moreover, the natural bioactive components with potential therapeutic benefits, such as non-starch polysaccharides and selenium. The purpose of this study is to highlight the advances achieved in understanding bioactive components e.g., phenolic compounds, flavonoids, tannins hydroxycinnamic, hydroxybenzoic and bio-oil of date palm fruits, including their synthesis, probable functions, and health advantages, to find prospective uses for date-derived materials in the cosmetics, pharmaceutical and food sector.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"190 ","pages":"Article 107433"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424003866","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Dates are vital sources of nutrients and bioactive components which are widely consumed throughout the world. Agro-industrial waste, such as date palm waste, has been recognized as a potential candidate of bioactive chemicals and essential oils for utilization in food, medicine, and cosmetics. Date fruit and seed are well-known for their nutritional worth, which includes high sugar, vitamins, and mineral content that includes potassium and magnesium. Presence of phenolic compounds diverges the attention of researchers towards efficient extraction processes. Various traditional e.g., soxhlet, maceration, infusion, and digesting and advanced extraction techniques, i.e., pressurised fluid extraction (PFE), enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), and supercritical CO2 extraction (SC-CO2) have been discussed briefly to extract bioactive components for instance flavonoids, tocopherols, tannins, carotenoids, tocotrienols and hydroxybenzoic acid from date palm fruit, seed, and leaves. The findings reveal that the higher total phenolic content in a shorter time can be obtained by combining ultrasonic with PLE or SFE extraction techniques. These bioactive components can be used in the food and pharmaceutical industries for pre-treatment of certain ailments. Moreover, the natural bioactive components with potential therapeutic benefits, such as non-starch polysaccharides and selenium. The purpose of this study is to highlight the advances achieved in understanding bioactive components e.g., phenolic compounds, flavonoids, tannins hydroxycinnamic, hydroxybenzoic and bio-oil of date palm fruits, including their synthesis, probable functions, and health advantages, to find prospective uses for date-derived materials in the cosmetics, pharmaceutical and food sector.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.