Sarah S. Queiroz , Maria das Graças A. Felipe , Solange I. Mussatto
{"title":"An overview of xylose valorization through its conversion into high-value chemicals by yeast","authors":"Sarah S. Queiroz , Maria das Graças A. Felipe , Solange I. Mussatto","doi":"10.1016/j.biombioe.2024.107428","DOIUrl":null,"url":null,"abstract":"<div><div>The valorization of lignocellulosic biomass (LCB) holds critical importance within the circular economy framework. Xylose, a five-carbon monosaccharide and the second most abundant sugar in LCB, represents a versatile building block for industrial applications. However, its use in fermentation processes is less efficient compared to hexoses like glucose, primarily due to the yeast <em>Saccharomyces cerevisiae</em> inability to metabolize this pentose. As a result, current industrial processes for xylose often rely on chemical catalysis methods, such as reduction and hydrogenation, which can have significant environmental impacts. Transitioning to sustainable processes requires both effective xylose recovery from LCB and enhanced fermentation efficiency. This review highlights LCB deconstruction techniques that yield high xylose concentrations and explores the potential of various yeast species to produce biofuels and value-added biomolecules from this pentose. This review summarizes recent advancements and highlights the potential for developing highly efficient xylose bioprocessing methodologies for sustainable biomass utilization.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"190 ","pages":"Article 107428"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424003817","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The valorization of lignocellulosic biomass (LCB) holds critical importance within the circular economy framework. Xylose, a five-carbon monosaccharide and the second most abundant sugar in LCB, represents a versatile building block for industrial applications. However, its use in fermentation processes is less efficient compared to hexoses like glucose, primarily due to the yeast Saccharomyces cerevisiae inability to metabolize this pentose. As a result, current industrial processes for xylose often rely on chemical catalysis methods, such as reduction and hydrogenation, which can have significant environmental impacts. Transitioning to sustainable processes requires both effective xylose recovery from LCB and enhanced fermentation efficiency. This review highlights LCB deconstruction techniques that yield high xylose concentrations and explores the potential of various yeast species to produce biofuels and value-added biomolecules from this pentose. This review summarizes recent advancements and highlights the potential for developing highly efficient xylose bioprocessing methodologies for sustainable biomass utilization.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.