Liang Han , Yue Wang , Ziwei Yan , Xiaoduo Li , Zhang Ren
{"title":"Event-triggered formation control with obstacle avoidance for multi-agent systems applied to multi-UAV formation flying","authors":"Liang Han , Yue Wang , Ziwei Yan , Xiaoduo Li , Zhang Ren","doi":"10.1016/j.conengprac.2024.106105","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates time-varying formation control with communication constraint for general discrete-time multi-agent systems (MASs), which aims to control a swarm of agents to maintain a desired formation while avoiding obstacles in the scenario with spatial constraint. The event-triggered mechanism is introduced to effectively reduce the system communication frequency and an artificial potential field function is incorporated into the proposed controller to achieve obstacle avoidance in formation. The obtained results are applied to solve obstacle avoidance problems for multiple unmanned aerial vehicles (UAVs) in formation flight. Physical simulations are completed with four UAV models on a 3-D visualization simulation platform integrated by Robot Operating System (ROS) and Gazebo. Then, practical experiments are carried out with four quadrotors in a complex experimental scenario combined with the motion capture system. The physical simulation and practical experiments are implemented to verify the effectiveness of the theoretical results.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"153 ","pages":"Article 106105"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002648","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates time-varying formation control with communication constraint for general discrete-time multi-agent systems (MASs), which aims to control a swarm of agents to maintain a desired formation while avoiding obstacles in the scenario with spatial constraint. The event-triggered mechanism is introduced to effectively reduce the system communication frequency and an artificial potential field function is incorporated into the proposed controller to achieve obstacle avoidance in formation. The obtained results are applied to solve obstacle avoidance problems for multiple unmanned aerial vehicles (UAVs) in formation flight. Physical simulations are completed with four UAV models on a 3-D visualization simulation platform integrated by Robot Operating System (ROS) and Gazebo. Then, practical experiments are carried out with four quadrotors in a complex experimental scenario combined with the motion capture system. The physical simulation and practical experiments are implemented to verify the effectiveness of the theoretical results.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.