Advancing General Sensor Data Synthesis by Integrating LLMs and Domain-Specific Generative Models

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-09-30 DOI:10.1109/LSENS.2024.3470748
Xiaomao Zhou;Qingmin Jia;Yujiao Hu
{"title":"Advancing General Sensor Data Synthesis by Integrating LLMs and Domain-Specific Generative Models","authors":"Xiaomao Zhou;Qingmin Jia;Yujiao Hu","doi":"10.1109/LSENS.2024.3470748","DOIUrl":null,"url":null,"abstract":"Synthetic data has become essential in machine learning and data science, addressing real-world data limitations such as scarcity, privacy, and cost. While existing generative models are effective in synthesizing various sensor data, they struggle with performance and generalization. This letter introduces a large language model (LLM)-driven framework that leverages LLMs and domain-specific generative models (DGMs) for general sensor data synthesis. Specifically, our method employs LLMs as the core to analyze data generation tasks, decompose complex tasks into manageable subtasks, and delegate each to the most suitable DGM, thereby automatically constructing customized data generation pipelines. Meanwhile, the integration of reinforcement learning (RL) is promising to enhance the framework's ability to optimally utilize DGMs, resulting in data generation with superior quality and control flexibility. Experimental results demonstrate the effectiveness of LLMs in understanding diverse tasks and in facilitating general sensor data synthesis through collaborative interactions with diverse DGMs.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 11","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10700677/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic data has become essential in machine learning and data science, addressing real-world data limitations such as scarcity, privacy, and cost. While existing generative models are effective in synthesizing various sensor data, they struggle with performance and generalization. This letter introduces a large language model (LLM)-driven framework that leverages LLMs and domain-specific generative models (DGMs) for general sensor data synthesis. Specifically, our method employs LLMs as the core to analyze data generation tasks, decompose complex tasks into manageable subtasks, and delegate each to the most suitable DGM, thereby automatically constructing customized data generation pipelines. Meanwhile, the integration of reinforcement learning (RL) is promising to enhance the framework's ability to optimally utilize DGMs, resulting in data generation with superior quality and control flexibility. Experimental results demonstrate the effectiveness of LLMs in understanding diverse tasks and in facilitating general sensor data synthesis through collaborative interactions with diverse DGMs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过整合 LLM 和特定领域生成模型推进通用传感器数据合成
合成数据在机器学习和数据科学中已变得至关重要,它能解决现实世界中的数据限制,如稀缺性、隐私性和成本。虽然现有的生成模型在合成各种传感器数据方面很有效,但在性能和泛化方面却举步维艰。本文介绍了一种大型语言模型(LLM)驱动的框架,该框架利用 LLM 和特定领域生成模型(DGM)进行通用传感器数据合成。具体来说,我们的方法以 LLM 为核心,分析数据生成任务,将复杂任务分解为易于管理的子任务,并将每个子任务委托给最合适的 DGM,从而自动构建定制的数据生成管道。同时,强化学习(RL)的集成有望增强该框架优化利用 DGM 的能力,从而使数据生成具有更高的质量和控制灵活性。实验结果证明了 LLM 在理解不同任务方面的有效性,以及通过与不同 DGM 的协作互动促进通用传感器数据合成的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
PPY-fMWCNT Nanocomposite-Based Chemicapacitive Biosensor for Ultrasensitive Detection of TBI-Specific GFAP Biomarker in Human Plasma Front Cover IEEE Sensors Council Information Table of Contents IEEE Sensors Letters Subject Categories for Article Numbering Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1