Research progress of Mn-based low-temperature SCR denitrification catalysts

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2024-10-17 DOI:10.1039/D4RA05140H
Jiadong Zhang, Zengyi Ma, Ang Cao, Jianhua Yan, Yuelan Wang, Miao Yu, Linlin Hu and Shaojing Pan
{"title":"Research progress of Mn-based low-temperature SCR denitrification catalysts","authors":"Jiadong Zhang, Zengyi Ma, Ang Cao, Jianhua Yan, Yuelan Wang, Miao Yu, Linlin Hu and Shaojing Pan","doi":"10.1039/D4RA05140H","DOIUrl":null,"url":null,"abstract":"<p >Selective catalytic reduction (SCR) is a efficiently nitrogen oxides removal technology from stationary source flue gases. Catalysts are key component in the technology, but currently face problems including poor low-temperature activity, narrow temperature windows, low selectivity, and susceptibility to water passivation and sulphur dioxide poisoning. To develop high-efficiency low-temperature denitrification activity catalyst, manganese-based catalysts have become a focal point of research globally for low-temperature SCR denitrification catalysts. This article investigates the denitrification efficiency of unsupported manganese-based catalysts, exploring the influence of oxidation valence, preparation method, crystallinity, crystal form, and morphology structure. It examines the catalytic performance of binary and multicomponent unsupported manganese-based catalysts, focusing on the use of transition metals and rare earth metals to modify manganese oxide. Furthermore, the synergistic effect of supported manganese-based catalysts is studied, considering metal oxides, molecular sieves, carbon materials, and other materials (composite carriers and inorganic non-metallic minerals) as supports. The reaction mechanism of low-temperature denitrification by manganese-based catalysts and the mechanism of sulphur dioxide/water poisoning are analysed in detail, and the development of practical and efficient manganese-based catalysts is considered.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra05140h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra05140h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Selective catalytic reduction (SCR) is a efficiently nitrogen oxides removal technology from stationary source flue gases. Catalysts are key component in the technology, but currently face problems including poor low-temperature activity, narrow temperature windows, low selectivity, and susceptibility to water passivation and sulphur dioxide poisoning. To develop high-efficiency low-temperature denitrification activity catalyst, manganese-based catalysts have become a focal point of research globally for low-temperature SCR denitrification catalysts. This article investigates the denitrification efficiency of unsupported manganese-based catalysts, exploring the influence of oxidation valence, preparation method, crystallinity, crystal form, and morphology structure. It examines the catalytic performance of binary and multicomponent unsupported manganese-based catalysts, focusing on the use of transition metals and rare earth metals to modify manganese oxide. Furthermore, the synergistic effect of supported manganese-based catalysts is studied, considering metal oxides, molecular sieves, carbon materials, and other materials (composite carriers and inorganic non-metallic minerals) as supports. The reaction mechanism of low-temperature denitrification by manganese-based catalysts and the mechanism of sulphur dioxide/water poisoning are analysed in detail, and the development of practical and efficient manganese-based catalysts is considered.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锰基低温 SCR 脱硝催化剂的研究进展
选择性催化还原(SCR)是一种从固定源烟气中高效去除氮氧化物的技术。催化剂是该技术的关键组成部分,但目前面临着低温活性差、温度窗口窄、选择性低、易受水钝化和二氧化硫毒害等问题。为开发高效低温脱硝活性催化剂,锰系催化剂已成为全球低温 SCR 脱硝催化剂研究的焦点。本文研究了无支撑锰系催化剂的脱硝效率,探讨了氧化价、制备方法、结晶度、晶型和形貌结构的影响。该研究考察了二元和多组分无支撑锰基催化剂的催化性能,重点研究了使用过渡金属和稀土金属修饰氧化锰的催化性能。此外,考虑到金属氧化物、分子筛、碳材料和其他材料(复合载体和无机非金属矿物)作为支撑,研究了支撑锰基催化剂的协同效应。详细分析了锰基催化剂的低温脱硝反应机理和二氧化硫/水中毒机理,并探讨了实用高效锰基催化剂的开发问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Achieving lysozyme functionalization in PDADMAC–NaPSS saloplastics through salt annealing† Development, cross-validation and greenness assessment of capillary electrophoresis method for determination of ALP in pharmaceutical dosage forms – an alternative to liquid chromatography† Functionalizable poly-terthiophene/Cu2O heterojunction constructed in situ for sensitive photoelectrochemical detection of long non-coding RNA markers† Hyperbranched TEMPO-based polymers as catholytes for redox flow battery applications† Accurate and sensitive dual-response fluorescence detection of microRNAs based on an upconversion nanoamplicon with red emission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1