Structure-based pose prediction: Non-cognate docking extended to macrocyclic ligands

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Computer-Aided Molecular Design Pub Date : 2024-10-16 DOI:10.1007/s10822-024-00574-0
Ann E. Cleves, Himani Tandon, Ajay N. Jain
{"title":"Structure-based pose prediction: Non-cognate docking extended to macrocyclic ligands","authors":"Ann E. Cleves,&nbsp;Himani Tandon,&nbsp;Ajay N. Jain","doi":"10.1007/s10822-024-00574-0","DOIUrl":null,"url":null,"abstract":"<div><p>So-called “cross-docking” is the prediction of the bound configuration of small-molecule ligands that differ from the cognate ligand of a protein co-crystal structure. This is a much more challenging problem than re-docking the cognate ligand, particularly when the new ligand is structurally dissimilar from prior known ones. We have updated the previously introduced PINC (“PINC Is Not Cognate”) benchmark which introduced the idea of temporal segregation to measure cross-docking performance. The temporal set encompasses 846 <i>future</i> ligands for ten targets based on information from the earliest 25% of X-ray co-crystal structures known for each target. Here, we extend the benchmark to include thirteen targets where the bound poses of 128 macrocyclic ligands are to be predicted based on knowledge from structures of bound <i>non-macrocyclic</i> ligands. Performance was roughly equivalent for both the temporally-split non-macrocyclic ligand set and the macrocycle prediction set. Using standard and fully automatic protocols for the Surflex-Dock and ForceGen methods, across the combined 974 non-macrocyclic and macrocyclic ligands, the top-scoring pose family was correct 68% of the time, with the top-two pose families achieving a 79% success rate. Correct poses among all those predicted were identified 92% of the time. These success rates far exceeded those observed for the alternative methods AutoDock Vina and Gnina on both sets.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-024-00574-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-024-00574-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

So-called “cross-docking” is the prediction of the bound configuration of small-molecule ligands that differ from the cognate ligand of a protein co-crystal structure. This is a much more challenging problem than re-docking the cognate ligand, particularly when the new ligand is structurally dissimilar from prior known ones. We have updated the previously introduced PINC (“PINC Is Not Cognate”) benchmark which introduced the idea of temporal segregation to measure cross-docking performance. The temporal set encompasses 846 future ligands for ten targets based on information from the earliest 25% of X-ray co-crystal structures known for each target. Here, we extend the benchmark to include thirteen targets where the bound poses of 128 macrocyclic ligands are to be predicted based on knowledge from structures of bound non-macrocyclic ligands. Performance was roughly equivalent for both the temporally-split non-macrocyclic ligand set and the macrocycle prediction set. Using standard and fully automatic protocols for the Surflex-Dock and ForceGen methods, across the combined 974 non-macrocyclic and macrocyclic ligands, the top-scoring pose family was correct 68% of the time, with the top-two pose families achieving a 79% success rate. Correct poses among all those predicted were identified 92% of the time. These success rates far exceeded those observed for the alternative methods AutoDock Vina and Gnina on both sets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构的姿势预测:非认知对接扩展到大环配体
所谓 "交叉对接 "是指预测与蛋白质共晶体结构中的同源配体不同的小分子配体的结合构型。这是一个比重新对接同源配体更具挑战性的问题,尤其是当新配体在结构上与之前的已知配体不同时。我们更新了之前推出的 PINC("PINC Is Not Cognate")基准,该基准引入了时间隔离的概念来衡量交叉对接性能。基于每个靶标已知的最早 25% 的 X 射线共晶体结构信息,时间集包含了 10 个靶标的 846 种未来配体。在此,我们将基准扩展到 13 个目标,其中 128 种大环配体的结合位置将根据结合的非大环配体的结构知识进行预测。时间上分离的非大环配体集和大环预测集的性能大致相同。使用 Surflex-Dock 和 ForceGen 方法的标准和全自动协议,在总共 974 种非大环配体和大环配体中,得分最高的姿势族在 68% 的情况下是正确的,得分最高的两个姿势族的成功率达到 79%。在所有预测的配体中,正确配体的识别率为 92%。这些成功率远远超过了 AutoDock Vina 和 Gnina 这两种方法的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computer-Aided Molecular Design
Journal of Computer-Aided Molecular Design 生物-计算机:跨学科应用
CiteScore
8.00
自引率
8.60%
发文量
56
审稿时长
3 months
期刊介绍: The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas: - theoretical chemistry; - computational chemistry; - computer and molecular graphics; - molecular modeling; - protein engineering; - drug design; - expert systems; - general structure-property relationships; - molecular dynamics; - chemical database development and usage.
期刊最新文献
MolGraph: a Python package for the implementation of molecular graphs and graph neural networks with TensorFlow and Keras Combining crystallographic and binding affinity data towards a novel dataset of small molecule overlays Promoter recognition specificity of Corynebacterium glutamicum stress response sigma factors σD and σH deciphered using computer modeling and point mutagenesis Understanding the relationship between preferential interactions of peptides in water-acetonitrile mixtures with protein-solvent contact surface area Identification of novel inhibitors targeting PI3Kα via ensemble-based virtual screening method, biological evaluation and molecular dynamics simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1