Numerical study of evaporation and heat and mass transfer inside the nozzle of a catalytic reformer of diesel fuel

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Thermophysics and Aeromechanics Pub Date : 2024-10-17 DOI:10.1134/S086986432402001X
M. Yu. Hrebtov, M. O. Zheribor, R. I. Mullyadzhanov, D. I. Potemkin, P. V. Snytnikov
{"title":"Numerical study of evaporation and heat and mass transfer inside the nozzle of a catalytic reformer of diesel fuel","authors":"M. Yu. Hrebtov,&nbsp;M. O. Zheribor,&nbsp;R. I. Mullyadzhanov,&nbsp;D. I. Potemkin,&nbsp;P. V. Snytnikov","doi":"10.1134/S086986432402001X","DOIUrl":null,"url":null,"abstract":"<div><p>In the presented work, the process of heat and mass transfer inside an original design nozzle for a catalytic reformer of diesel fuel in a low-mass-flux mode is investigated by direct numerical simulation using Open FOAM open-source code. The main goal of a new nozzle design is to increase the rate and degree of fuel evaporation, as well as to improve the mixing characteristics of diesel fuel with superheated water vapor before the reaction mixture passes through the catalyst. Inside the nozzle, there are two regions where flows with opposite swirl directions are created; this leads to a strong velocity shear inside the nozzle, intensifying the mixing processes. Simulations were carried out in the Eulerian-Lagrangian formulation, taking into account the processes of evaporation of fuel droplets. The simulation results show that the flow at the outlet of the nozzle has a good uniformity of the mixture composition and provides a high degree of fuel evaporation at the early stages of flow development.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S086986432402001X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

In the presented work, the process of heat and mass transfer inside an original design nozzle for a catalytic reformer of diesel fuel in a low-mass-flux mode is investigated by direct numerical simulation using Open FOAM open-source code. The main goal of a new nozzle design is to increase the rate and degree of fuel evaporation, as well as to improve the mixing characteristics of diesel fuel with superheated water vapor before the reaction mixture passes through the catalyst. Inside the nozzle, there are two regions where flows with opposite swirl directions are created; this leads to a strong velocity shear inside the nozzle, intensifying the mixing processes. Simulations were carried out in the Eulerian-Lagrangian formulation, taking into account the processes of evaporation of fuel droplets. The simulation results show that the flow at the outlet of the nozzle has a good uniformity of the mixture composition and provides a high degree of fuel evaporation at the early stages of flow development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柴油催化重整器喷嘴内的蒸发和传热传质数值研究
在本论文中,使用 Open FOAM 开源代码直接进行数值模拟,研究了低质量流量模式下柴油催化重整器原始设计喷嘴内部的传热和传质过程。新型喷嘴设计的主要目标是提高燃料蒸发速度和程度,以及改善柴油与过热水蒸气在反应混合物通过催化剂之前的混合特性。在喷嘴内部,有两个漩涡方向相反的流动区域;这导致喷嘴内部产生强烈的速度剪切,强化了混合过程。模拟采用欧拉-拉格朗日公式,并考虑了燃料液滴的蒸发过程。模拟结果表明,喷嘴出口处的流动具有良好的混合成分均匀性,在流动发展的早期阶段,燃料蒸发程度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thermophysics and Aeromechanics
Thermophysics and Aeromechanics THERMODYNAMICS-MECHANICS
CiteScore
0.90
自引率
40.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.
期刊最新文献
Experimental study of the influence of bubble interaction on their characteristics during transient boiling in a flow of subcooled liquid Modification of the DSMC method for a macroscopic chemical reaction On the influence of multi-walled carbon nanotube additives on the rheology of hydrocarbon-based drilling fluids Asymptotic decay of a far momentumless turbulent wake behind a sphere in an isotropic turbulent flow Modeling shock-wave cells at the initial region of the underexpanded supersonic jet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1